Bart FARRELL
KUBERNETES STORIES

foreword by

FROM THE
TRENCHES

GULCAN TOPCU

Copyright © 2025 by Learnk8s
All rights reserved.

No part of this book may be reproduced or used in any
manner without written permission of the copyright owner
except for the use of quotations in a book review. For more
information, address: hello@learnk8s.io.

mailto:hello@learnk8s.io

Table of contents

Kubernetes Stories From The Trenches 9
Foreword 5
Why This Book Matters 6
What You’ll Learn & Who This Book is For 7
Contrasting Opinions & Tips for Reading 8

Upgrading Hundreds of Kubernetes Clusters, Pierre Mavro 10
Clusters are Cattle Until you Deploy Ingress, Dan Garfield 26

eBPF, Sidecars, and the Future of the Service Mesh, 47
William Morgan

Kubernetes Needs a Long Term Support (LTS) Release 68
Plan, Matthew Duggan

Surviving Multi-Tenancy in Kubernetes: Lessons Learned, 87
Artem Lajko

Hacking Alibaba Cloud's Kubernetes Cluster, Hillai Ben- 102
Sasson & Ronen Shustin

From 0 to 10k Builds a Week With Self-Hosted Jenkins on121
Kubernetes

Migrating 24 services from Docker compose to 142
Kubernetes, Ronald Ramazanov & Vasily Kolosov

Tortoise: Outpacing the Optimization Challenges in
Kubernetes, Kensei Nakada

How We are Managing a Container Platform With
Kubernetes at Adidas, Angel Barrera

Acknowledgments
Thanks to the Guests

A Special Thanks

163

183

200
203
204

Foreword

Humans love stories. They guide, warn, and teach.
Through them, we learn what to repeat and what to
avoid.

Kubernetes, even after 10 years, remains an untamed
frontier. During my 3 years leading the Data on
Kubernetes Community, I saw one topic resurface
constantly—stateful workloads. It’s still unfinished
business, with no clear standard practices.

KubeFM creates a space where engineers share the raw
truth of their work—successes, struggles, and deep
dives, from network policies and secrets management to
debugging webhooks all the way down to the Linux
kernel.

The podcast thrives because it mirrors the reality of
engineers stepping into uncharted territory, navigating
challenges, and returning with hard-earned lessons. Our
guests are those pioneers, and I’'m grateful for their
willingness to share.

Let’s keep telling these stories—making our community
stronger, more open, and ready to face what’s next.

Why This Book Matters

Kubernetes isn’t just about code or architecture
diagrams. It’s about the people who wrestle with, and
ultimately master, this technology. Our goal is to bring
you into their world. By the time you reach the last page,
you'll not only understand Kubernetes better, but you'll
also appreciate the incredible challenges and triumphs
that come with it.

What You’ll Learn & Who This Book is
For

From scaling hundreds of clusters to the secrets of multi-
tenancy, from breaking down complex service meshes to
innovating at cloud-native companies like Adidas, each
chapter unpacks the real-world applications of
Kubernetes. You'll gain insights into automation at scale,
security pitfalls, optimization hacks, and even hear
stories of how things went wrong—and what was
learned from those failures.

Whether you’re a seasoned Kubernetes operator, a
developer curious about cloud-native patterns, or
someone exploring tech career paths, there’s something
here for you. And if you’re wondering why stories are so
powerful, remember this: Concepts are easier to grasp
when we see them play out in real scenarios. Here, you’ll
learn from the firsthand experiences of engineers and
leaders who have been in the trenches.

Contrasting Opinions & Tips for Reading

One thing you’ll notice as you read is that these experts
don’t always agree. And that’s okay. In fact, it’s one of
the strengths of the Kubernetes community. As you
move from chapter to chapter, you’ll see how different
strategies can lead to success—or sometimes, to
surprising challenges. You’re invited to think critically
and form your own views.

Each chapter stands alone, so feel free to jump to the
stories that catch your eye. If you're interested in scaling,
you might love Pierre Mavro's account of automating
cluster upgrades. If security is your passion, dive into the
saga of breaking into cloud environments with Hillai and
Ronen.

Chapter 1

Building at
Scale

Upgrading Hundreds of Kubernetes
Clusters, Pierre Mavro

Automating the upgrade process for hundreds of
Kubernetes clusters is a formidable task, but it's one that
Pierre Mavro, the co-founder and CTO at Qovery, is
well-equipped to handle. With his extensive experience
and a dedicated team of engineers, they have
successfully automated the upgrade process for both
public and private clouds.

Bart Farell sat with Pierre to understand how he did it
without breaking the bank.

You can watch (or listen) to this interview here.

Bart: If you installed three tools on a new Kubernetes
cluster, which tools would they be and why?

Pierre: The first tool I recommend is K9s. It's not just a
time-saver but a productivity booster. With its intuitive
interface, you can speed up all the usual kubectl
commands, access logs, edit resources and
configurations, and more. It's like having a personal
assistant for your cluster management tasks.

The second one is a combination of tools: External DNS,

cert-manager, and NGINX ingress. Using these as a
stack, you can quickly deploy an application, making it

https://kube.fm/upgrading-100s-clusters-pierre
https://k9scli.io/
https://github.com/kubernetes-sigs/external-dns
https://cert-manager.io/
https://github.com/kubernetes/ingress-nginx

available through a DNS with a TLS without much effort
via simple annotations. When I first discovered External
DNS, I was amazed at its quality.

The last one is mostly an observability stack with
Prometheus, Metric server, and Prometheus adapter to
have excellent insights into what is happening on the
cluster. You can reuse the same stack for autoscaling by
repurposing all the data collected for monitoring.

Bart: Tell us more about your background and how you
progressed through your career.

Pierre: My journey in the tech industry has been diverse
and enriching. I've had the privilege of working for
renowned companies like Red Hat and Criteo, where I
honed my skills in cloud deployment. Today, as the co-
founder and CTO of Qovery, I bring a wealth of
experience in distributed systems, particularly for
NoSQL databases, and a deep understanding of
Kubernetes, which I began exploring in 2016 with
version 1.2.

To provide some context to Qovery's services, we offer a
self-service developer platform that allows code
deployment on Kubernetes without requiring expertise in
infrastructure. We keep our platform cloud-agnostic and
place Kubernetes at the core to ensure our deployments
are portable across different cloud providers.

Bart: How was your journey into Kubernetes and the

https://github.com/prometheus-operator/kube-prometheus
https://github.com/kubernetes-sigs/metrics-server
https://github.com/kubernetes-sigs/prometheus-adapter
https://www.qovery.com/

cloud-native world, given the changes since 20167

Pierre: Actually, learning Kubernetes was quite a
journey. You had a less developed landscape with most
Kubernetes components in alpha at these times. In 2016,
I was also juggling between my job at Criteo and my
own company.

When it came to deployment, I had several options, and I
chose the hard way: deploying Kubernetes on bare metal
nodes using KubeSpray. Troubleshooting bare metal
Kubernetes deployments honed my skills in pinpointing
issues. This hands-on experience provided a deep
understanding of how each component, like the Control
Plane, kubelet, Container Runtime, and scheduler,
interacts to orchestrate containers.

Another resource that I found pretty helpful was
"Kubernetes the Hard Way" by Kelsey Hightower
despite its complexity.

Lastly, I got help from the official Kubernetes docs.

Bart: Looking back, is there anything you would do
differently or advice you would give to your past self?

Pierre: Not really. Looking back, KubeSpray was the
best option at the time, and there were no significant
changes I would make to the decision.

Bart: You've worked on various projects involving bare

metal and private clouds. Can you share more about your
Kubernetes experience, such as the scale of clusters and

https://github.com/kubernetes-sigs/kubespray
https://kubernetes.io/docs/concepts/overview/components/#control-plane-components:~:text=a%20Kubernetes%20cluster-,Control%20Plane%20Components,-The%20control%20plane%27s
https://kubernetes.io/docs/concepts/overview/components/#control-plane-components:~:text=a%20Kubernetes%20cluster-,Control%20Plane%20Components,-The%20control%20plane%27s
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/#:~:text=kubelet-,kubelet,-Synopsis
https://kubernetes.io/docs/setup/production-environment/container-runtimes/#:~:text=Container%20Runtimes-,Container%20Runtimes,-Note%3A%20Dockershim
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/#:~:text=Kubernetes%20Scheduler-,Kubernetes%20Scheduler,-In%20Kubernetes%2C
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://kubernetes.io/docs/home/

nodes?

Pierre: At Criteo, I led a NoSQL team supporting
several million requests per second on a massive 4,500-
node bare-metal cluster. Managing this infrastructure
particularly node failures and data consistency across
stateful databases like Cassandra, Couchbase, and
Elasticsearch was a constant challenge.

While at Criteo, I also had a personal project where I
built a smaller 10-node bare-metal cluster.

This experience with bare metal management solidified
my belief in the benefits of Kubernetes, which I later
implemented at Criteo.

When we adopted Kubernetes at Criteo, we encountered
initial hurdles. In 2018, Kubernetes operators were still
new, and there was internal competition from Mesos. We
addressed these challenges by validating Kubernetes
performance for our specific needs and building custom
Chef recipes, StatefulSet hooks, and startup scripts.

Migrating to Kubernetes took eight months of dedicated
effort. It was a complex process, but it was worth it.

Bart: As you’ve mentioned, Kubernetes had competitors
in 2018 and continues to do so today. Despite the
tooling's immaturity, you led a team to adopt Kubernetes
for stateful workloads, which was unconventional. How
did you guide your team through this transition?

Pierre: We had large instances — all between 50 and

https://mesos.apache.org/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/#:~:text=StatefulSets-,StatefulSets,-StatefulSet%20is%20the

100 CPUs each and 256 gigabytes of RAM up to 500
gigabytes of RAM.

We had multiple Cassandra clusters on a single
Kubernetes cluster, and each Kubernetes node was
dedicated to a single Cassandra node. We chose this bare
metal setup to optimize disk access with SSD or NVMe.

Running these stateful workloads wasn't just a matter of
starting them up. We had to handle them carefully
because stateful sets like Elasticsearch and Cassandra
must keep their data safe even if the machine they're
running on fails.

Kubernetes helped us detect issues with these apps using
features like Pod Disruption Budgets (PDBs) that limit
how often pods can be disrupted, StatefulSets that have
consistent ordering of execution and stable storage, and
automated probes that trigger actions and alerts when
something goes wrong.

Bart: Your experiences helped me better understand
your blog post, The Cost of Upgrading Hundreds of
Kubernetes Clusters. After managing large
infrastructures, you founded Qovery. What drove you to
take this step as an engineer?

Pierre: Kubernetes has become a standard, but
managing it can be a headache for developers. Cloud
providers offer a basic Kubernetes setup, but it often
needs more features developers need to get started and

https://kubernetes.io/docs/concepts/workloads/#:~:text=Workloads-,Workloads,-A%20workload%20is
https://kubernetes.io/docs/tasks/run-application/configure-pdb/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/#:~:text=and%20Startup%20Probes-,Configure%20Liveness%2C%20Readiness%20and%20Startup%20Probes,-This%20page%20shows

deploy applications quickly. Managing the cluster and
nodes and keeping them up-to-date is time-consuming.
Developers must spend a lot of time adding extra tools
and configurations on top of the basic setup and then
updating everything, which can be time-consuming.

To tackle these challenges, I founded Qovery.

Qovery provides two critical solutions. First, it offers a
unified, user-friendly stack across cloud providers,
simplifying Kubernetes deployment and management
complexity. Second, it enables developers to deploy code
without hassle.

Bart: Managing clusters can have various
interpretations. The term can be broad. How do you
define cluster management at Qovery in the context of
upgrading and recovery?

Pierre: Yes, that's right. At Qovery, we understand the
complexity of managing Kubernetes for customers.
That's why we automate and simplify the entire process.

We automatically notify you about upcoming Kubernetes
updates and handle the upgrade process on schedule,
eliminating the need for manual intervention.

We deploy and manage various essential charts for your
environment, including tools for logging, metrics
collection, and certificate management. You don't need
to worry about these intricacies.

We deploy all the necessary infrastructure elements to

https://kubernetes.io/releases/
https://kubernetes.io/releases/

create a fully functional Kubernetes environment for
production within 30 minutes. We provide a complete
solution that's ready to go.

We build your container images, push them to a registry,
and deploy them based on your preferences. We also
handle the lifecycle of the applications deployed.

We use Cluster Autoscaler to automatically adjust the
number of nodes (cluster size) based on your actual
usage to ensure efficiency. Additionally, we deploy
Vertical and Horizontal Pod Autoscalers to scale your
applications' resources as their needs change
automatically.

By taking care of these complexities, Qovery frees your
developers to focus solely on what matters most:
building incredible applications.

Bart: How large is your team of engineers?

Pierre: We have ten engineers working on the project.
Bart: How do you manage hundreds of clusters with
such a small team?

Pierre: We run various tests on each code change,
including unit tests for individual components and end-
to-end tests that simulate real-world usage. These tests

cover configurations and deployment scenarios to catch
potential issues early on.

Before deploying a new cluster for a customer, we put it
through its paces on our internal systems for weeks.

https://github.com/kubernetes/autoscaler
https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

Then, we deploy it to a separate non-production
environment where we closely monitor its performance
and address any problems before it reaches your
applications.

We closely monitor Kubernetes and cloud providers'
updates by following official changelogs and using RSS
feeds, allowing us to anticipate potential issues and adapt
our infrastructure proactively.

We also leverage tools like Kubent, popeye, kdave, and
Pluto to help us manage API deprecations (when
Kubernetes deprecates features in updates) and ensure
the overall health of our infrastructure.

Our multi-layered approach has proven successful. We
haven't encountered any significant problems when
deploying clusters to production environments.

Bart: Managing new releases in the Kubernetes
ecosystem can be daunting, especially with the extensive
changelog. How do you navigate this complexity and
spot potential difficulties when a new release is on the
horizon?

Pierre: While reading the official update changelogs
from Kubernetes and cloud providers is our first step,
there are other paths to smooth sailing. Furthermore,
understanding these detailed technical documents can be
challenging, especially for newer team members who
don’t have prior on-premise Kubernetes experience.

https://github.com/kubernetes/kubernetes/tree/master/CHANGELOG
https://github.com/doitintl/kube-no-trouble
https://github.com/derailed/popeye
https://github.com/wayfair-incubator/kdave
https://github.com/FairwindsOps/pluto
https://kubernetes.io/docs/reference/using-api/deprecation-guide/#:~:text=API%20Migration%20Guide-,Deprecated%20API%20Migration%20Guide,-As%20the%20Kubernetes

Cloud providers typically offer well-defined upgrade
processes and document significant changes like
removed functionalities, changes in API behavior, or
security updates in their changelogs. However, many
elements are interconnected in a Kubernetes cluster,
especially when you deploy multiple charts for
components like logging, observability, and ingress.
Even with automated tools, we still need extensive
testing and a manual process to ensure everything
functions smoothly after an update.

Bart: So, what is your upgrading plan for helm charts?

Pierre: Upgrading Helm charts can be tricky because
they bundle both the deployment and the software; for
example, upgrading the Loki chart also upgrades Loki
itself. To better understand what's changing, you need to
review two changelogs: one for the chart itself and
another for the software it includes.

We keep a close eye on all the charts we use by storing
them in a central repository. This way, we have a clear
history of every version we've used. We use a tool called
helm-freeze t0 lock down the specific version of each chart
we want to use. We can also track changes between chart
and software versions using the git diff command.

If needed, we can also adjust specific settings within the
chart using values override.

Like any other code change, we thoroughly test the

https://helm.sh/docs/topics/charts/#:~:text=Contribute%20to%20Docs-,Charts,-Helm%20uses%20a
https://grafana.com/docs/loki/latest/
https://github.com/Qovery/helm-freeze

upgraded charts with unit and functional tests to ensure
everything works as expected.

Once testing is complete, we route the updated charts to
our test cluster for a final round of real-world testing.
After a few days of monitoring, if everything looks
good, we confidently release the wupdates to our
customers.

Bart: How do you handle unexpected situations? Do you
have a specific strategy or write more automation in the
Helm charts?

Pierre: We're excited to see more community Helm
charts, including built-in tests! This practice will make it
easier for everyone to trust and use these charts in the
future.

At Qovery, we enable specific Helm options by default,
like 'atomic' and 'wait,’ which help prevent upgrade
failures during the process. However, there can still be
issues that only show up in the logs, so we run additional
tests specifically designed to catch these hidden
problems.

Upgrading charts that deploy Custom Resource
Definitions (CRDs) requires special attention. We've
automated this process to upgrade the CRDs first (to the
required version) and then upgrade the chart itself.
Additionally, for critical upgrades like cert-manager
(which manages certificates), we back up and restore

https://helm.sh/docs/topics/chart_tests/#:~:text=Contribute%20to%20Docs-,Chart%20Tests,-A%20chart%20contains
https://helm.sh/docs/helm/helm_install/#:~:text=Options-,%2D%2Datomic,-if%20set%2C%20the
https://helm.sh/docs/helm/helm_install/#:~:text=version%20is%20used-,%2D%2Dwait,-if%20set%2C%20will
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#:~:text=Custom%20Resources-,Custom%20Resources,-Custom%20resources%20are
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#:~:text=Custom%20Resources-,Custom%20Resources,-Custom%20resources%20are

resources before applying the upgrade to avoid losing
any critical certificates.

If you’re running an older version of a non-critical tool
like a logging system, upgrading through each minor
version one by one can be time-consuming. We have a
better way! Our system allows you to skip to the desired
newer version, bypassing all those intermediate updates.

We've also built safeguards into our system to handle
potential problems before they occur during cluster
upgrades. For example, the system checks for issues like
failed jobs, incorrect Pod Disruption Budgets
configuration, or ongoing processes that might block the
upgrade. If it detects any problems, our engine
automatically attempts to fix or clean up the issue. It will
also warn you if any manual intervention is needed.

Our ultimate goal is to automate the upgrade process as
much as possible.

Bart: Would you say CRDs are your favorite feature in
Kubernetes, or do you have another one?

Pierre:. CRDs are a powerful tool for customizing
Kubernetes, offering a high degree of flexibility.
However, the current support and tooling around them
leave room for improvement. For example, enhancing
Helm with better CRD management capabilities would
significantly improve the user experience.

Despite these limitations, the potential of CRDs for

customizing Kubernetes is undeniable, making them a
genuinely standout feature.

Bart: With your vast Kubernetes experience since 2016,
how does your current process scale beyond 100
clusters? What do you need for such scalability?

Pierre: While basic application metrics can provide a
general sense of health, managing hundreds of clusters
requires more in-depth testing. Here at Qovery, with our
experience handling nearly 300 clusters, we've found
that:

More than basic metrics are needed. We need
comprehensive testing that leverages application-specific
metrics to ensure everything functions as expected.

Scaling requires more granular control over
deployments, such as halting failures and providing
detailed information to our users. For instance, quota
issues from the cloud provider might necessitate user
intervention.

Drawing from my experience at Criteo, where robust
tooling was essential for managing complex tasks,
powerful tools are the key to effectively scaling beyond
100 clusters.

Bart: Looking ahead at Qovery's roadmap, what's next
for your team?

Pierre: Qovery will add Google Cloud Platform (GCP)
by year-end, joining AWS and Scaleway! This expansion

https://cloud.google.com/?hl=en
https://aws.amazon.com/
https://www.scaleway.com/en/

gives you more choices for your cloud needs.

We're extracting reusable code sections, like those
related to Helm integration, and transforming them into
dedicated libraries. By making these functionalities
available as open-source libraries, we empower the
developer community to leverage them in their projects.

We strongly believe in Rust as a powerful language for
building production-grade software, especially for
systems like ours that run alongside Kubernetes.

We're also developing a service catalog feature that
offers a user-friendly interface and streamlines complex
deployments. This feature will allow users to focus on
their applications, not the intricacies of the underlying
technology.

Bart: Do you have any plans to include Azure?

Pierre: Yes, we have, but integrating a new cloud
provider, given our current team size, is challenging.
While we are a team of seniors, each cloud provider has
nuances; some are more mature Or resource-extensive
than others.

Today, our focus is on AWS and GCP, as our customers
most request. However, we're also working on a more
modular approach that will allow Qovery to be deployed
on any Kubernetes cluster, irrespective of the cloud
provider, although this is still in progress.

Bart: We're looking forward to hearing more about that.

https://www.rust-lang.org/
https://azure.microsoft.com/en-us

So, with your black belt in karate, how does that
experience influence how you approach challenges,
breaking them down into manageable steps?

Pierre: Karate has taught me the importance of
discipline, focus, and breaking down complex tasks into
manageable steps. Like in karate, where each move is
deliberate and precise, I apply the same approach to
challenges in my work, breaking them down into
smaller, achievable goals.

Karate has also instilled in me a sense of perseverance
and resilience, which are invaluable when facing
difficult situations.

Bart: I'm a huge martial arts fan. How do you see
martial arts' influence on managing stress in challenging
situations?

Pierre: It varies from person to person. My experience
in the banking industry has shown me that while some
can handle stressful situations, others struggle. Martial
arts can help manage stress somewhat, depending on the
person.

Bart: How has your 25-year journey in karate shaped
your perspective?

Pierre: Karate has become a part of me, and I plan to
continue as long as possible.

Bart: What's the best way to reach out to you?

Pierre: You can reach me on LinkedIn or via email. I'm

always happy to help.

Chapter 2

The Magic of
Ingress

Clusters are Cattle Until you Deploy
Ingress, Dan Garfield

Managing repeatable infrastructure is the bedrock of
efficient Kubernetes operations. While the ideal is to
have easily replaceable clusters, reality often dictates a
more nuanced approach. Dan Garfield, Co-founder of
Codefresh, briefly captures this with the analogy: "A
Kubernetes cluster is treated as disposable until you
deploy ingress, and then it becomes a pet."

Dan Garfield joined Bart Farrell to understand how he
managed Kubernetes clusters, transforming them from
"cattle" to "pets" weaving in fascinating anecdotes about
fairy tales, crypto, and snowboarding.

You can watch (or listen) to this interview here.

Bart: What are your top three must-have tools starting
with a fresh Kubernetes cluster?

Dan: Argo CD is the first tool I install. For AWS, T will
add Karpenter to manage costs. I will also use Longhorn
for on-prem storage solutions, though I'd need ingress.
Depending on the situation, I will install Argo CD first
and then one of those other two.

Bart: Many of our recent podcast guests have
highlighted Argo or Flux, emphasizing their significance

https://kube.fm/ingress-gitops-dan
https://argo-cd.readthedocs.io/en/stable/
https://karpenter.sh/
https://longhorn.io/
https://fluxcd.io/

in the GitOps domain. Why do you think these tools are
considered indispensable?

Dan: The entire deployment workflow for Kubernetes
revolves around Argo CD. When I set up a cluster, some
might default to using kubectl apply , or if they're using
Terraform, they might opt for the Helm provider to
install various Helm charts. However, with Argo CD, I
have precise control over deployment processes.

Typically, the bootstrap pattern involves using Terraform
to set up the cluster and Helm provider to install Argo
CD and predefined repositories. From there, Argo CD
takes care of the rest.

I have my Kubernetes cluster displayed on the screen
behind me, running Argo CD for those who can't see. I
utilize Argo CD autopilot, which streamlines repository
setup. Last year, when my system was compromised,
Argo CD autopilot swiftly restored everything. It's
incredibly convenient. Moreover, when debugging, the
ability to quickly toggle sync, reset applications, and
access logs through the UI is invaluable. Argo CD is,
without a doubt, my go-to tool for Kubernetes.
Admittedly, I'm biased as an Argo maintainer, but it's
hard to argue with its effectiveness.

Bart: Our numerous podcast discussions with seasoned
professionals show that GitOps has been a recurring
theme in about 90% of our conversations. Almost every

https://www.gitops.tech/
https://www.terraform.io/
https://registry.terraform.io/providers/hashicorp/helm/latest/docs
https://argocd-autopilot.readthedocs.io/en/stable/

guest we've interviewed has emphasized its importance,
often mentioning it as their primary tool alongside other
essentials like cert manager, Kyverno, or OPA,
depending on their preferences.

Could you introduce yourself to those unfamiliar with
you? Tell us your background, work, and where you're
currently employed.

Dan: I'm Dan Garfield, the co-founder and chief open-
source officer at CodeFresh. As Argo maintainers, we're
deeply involved in shaping the GitOps landscape. I've
played a key role in creating the GitOps standard,
establishing the GitOps working group, and
spearheading the OpenGitOps project.

Our journey began seven years ago when we launched
CodeFresh to enhance software delivery in the cloud-
native ecosystem, primarily focusing on Kubernetes.
Alongside my responsibilities at CodeFresh, I actively
contribute to SIG security within the Kubernetes
community and oversee community-driven events like
ArgoCon. Outside of work, I reside in Salt Lake City,
where I indulge in my passion for snowboarding. Oh,
and I'm a proud father of four, eagerly awaiting the
arrival of our fifth child.

Bart: It’s a fantastic journey. We'll have to catch up
during KubeCon in Salt [.ake City later this year. Before
delving into your entrepreneurial venture, could you

https://cert-manager.io/
https://kyverno.io/
https://www.openpolicyagent.org/
https://opengitops.dev/
https://codefresh.io/
https://github.com/kubernetes/sig-security
https://events.linuxfoundation.org/kubecon-cloudnativecon-europe/co-located-events/argocon/
https://events.linuxfoundation.org/kubecon-cloudnativecon-north-america/

share how you entered Cloud Native?

Dan: My journey into the tech world began early on as a
programmer. However, I found myself gravitating more
towards the business side, where I discovered my knack
for marketing. My pivotal experience was leading
enterprise marketing at Atlassian during the release of
Data Center, Atlassian's clustered tool version. Initially,
it didn't garner much attention internally, but it soon
became a game-changer, driving significant revenue for
the company. Witnessing this transformation, including
Atlassian's public offering, was exhilarating, although
my direct contribution was modest as I spent less than
two years there.

I noticed a significant change in containerization, which
sparked my interest in taking on a new challenge.
Conversations with friends starting container-focused
experiences captivated me. Then, Raziel, the founder of
Codefresh, reached out, sharing his vision for container-
driven software development. His perspective resonated
deeply, prompting me to join the venture.

Codefresh initially prioritized building robust CI tools,
recognizing that effective CD hinges on solid CI
practices and needed to be improved in many
organizations at the time (and possibly still is). As we
expanded, we delved into CD and explored ways to
leverage Kubernetes insights.

https://www.atlassian.com/
https://www.atlassian.com/enterprise/data-center
https://www.linkedin.com/in/razielt/

Kubernetes had yet to emerge as the dominant force
when we launched this journey. We evaluated
competitors like Rancher, OpenShift, Mesosphere, and
Docker Swarm. However, after thorough analysis,
Kubernetes emerged as the frontrunner, boldly cueing us
to bet on its potential.

Our decision proved visionary as other platforms
gradually transitioned towards Kubernetes. Amazon's
launch of EKS validated our foresight. This strategic
alignment with Kubernetes paved the way for our deep
dive into GitOps and Argo CD, driving the project's
growth within the CNCF and its eventual graduation.
Bart: It's impressive how much you've accomplished in
such a short timeframe, especially while balancing
family life. With the industry evolving rapidly, How do
you keep up with the cloud-native scene as a maintainer
and a co-founder?

Dan: Indeed, staying updated involves reading blogs,
scrolling through Twitter, and tuning into podcasts.
However, I've found that my most insightful learnings
come from direct conversations with individuals. For
instance, I've assisted the community with Argo
implementations, not as a sales pitch but to help gather
insights genuinely. Interacting with Codefresh users and
engaging with the broader community provides
invaluable perspectives on adoption challenges and user

https://www.rancher.com/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://kube.fm/ingress-gitops-dan#:~:text=.%20And%20maybe-,Mesosphere,-is%20going%20to
https://docs.docker.com/engine/swarm/
https://aws.amazon.com/eks/
https://www.cncf.io/

needs.

Oddly enough, sometimes, the best way to learn is by
putting forth incorrect opinions or questions. Recently,
while wrestling with Al project complexities, I pondered
aloud whether all Docker images with AI models would
inevitably be bulky due to PyTorch dependencies. To my
surprise, this sparked many helpful responses, offering
insights into optimizing image sizes. Being willing to be
wrong opens up avenues for rapid learning.

Bart: That wvulnerability can indeed produce rich
learning experiences. It's a valuable practice. Shifting
gears slightly, if you could offer one piece of career
advice to your younger self, what would it be?

Dan: Firstly, embrace a mindset of rapid learning and
humility. Be more open to being wrong and detach ego
from ideas. While standing firm on important matters is
essential, recognize that failure and adaptation are part of
the journey. Like a stone rolling down a mountain, each
collision smooths out the sharp edges, leading to growth.

Secondly, prioritize hiring decisions. The people you
bring into your business shape its trajectory more than
any other factor. A wrong hire can have far-reaching
consequences beyond their salary. Despite some
missteps, I've been fortunate to work with exceptional
individuals who contribute immensely to our success.
When considering a job opportunity, I always emphasize

https://pytorch.org/

the people's quality, the mission's significance, and fair
compensation. Prioritizing in this order ensures
fulfillment and satisfaction in your career journey.

Bart: That's insightful advice, especially about hiring.
Surrounding yourself with talented individuals can make
all the difference in navigating business challenges.
Now, shifting gears to your recent tweet about
Kubernetes and Ingress, who was the intended audience
for that tweet?

Dan: Honestly, it was more of a reflection for myself,
perhaps shouted into the void. I was weighing the
significance of deploying Ingress within Kubernetes. In
engineering, a saying that "the problem is always DNS"
suggests that your cluster becomes more tangible once
you configure DNS settings. Similarly, setting up Ingress
signifies a shift in how you perceive and manage your
cluster. Without Ingress, it might be considered
disposable, like a development environment. However,
once Ingress is in place, your cluster hosts services that
require more attention and care.

Bart: For those unfamiliar with the "cattle versus pets"

analogy in Kubernetes, could you elaborate on its
relevance, particularly in the context of Ingress?

Dan: While potentially controversial, the "cattle versus
pets" analogy illustrates a fundamental concept in
managing infrastructure. In this analogy, cattle represent

https://twitter.com/todaywasawesome/status/1701625561536454879
https://www.hava.io/blog/cattle-vs-pets-devops-explained

interchangeable and disposable resources, much like
livestock in a ranching operation. Conversely, pets are
unique, loved entities requiring personalized care.

In Kubernetes, deploying resources as "cattle" means
treating them as replaceable, identical units. However,
Ingress introduces a shift towards a "pet" model, where
individual services become distinct and valuable entities.
Just as you wouldn't name every cow on a farm, you
typically wouldn't concern yourself with the specific
details of each interchangeable resource. But once you
start deploying services accessible via Ingress, each
service becomes unique and worthy of individual
attention, akin to caring for a pet.

Bart: It seems the "cattle versus pets" analogy is stirring
some controversy among vegans, which s
understandable given its context. How does this analogy
relate to Kubernetes and Ingress?

Dan: In software, the analogy helps distinguish between
disposable, interchangeable components (cattle) and
unique, loved entities (pets). For instance, in my
Kubernetes cluster, the individual nodes are like cattle—
replaceable and without specific significance. If one
node malfunctions, I can easily swap it out without
concern.

However, once I deploy Ingress and start hosting
services, the cluster takes on a different role. While the

individual nodes remain disposable, the cluster becomes
more akin to a pet. I care about its state, its
configuration, and its uptime. Suddenly, I'm monitoring
metrics and ensuring its well-being, similar to caring for
a pet's health.

So, the analogy underscores the shift in perception and
care that occurs when transitioning from managing
generic infrastructure to hosting meaningful services
accessible via Ingress.

Bart: That's a fascinating perspective. How do
Kubernetes and Ingress relate to all of this?

Dan: The ingress in Kubernetes is a central resource for
managing incoming traffic to the cluster and routing it to
different services. However, unlike other resources in
Kubernetes, such as those managed by Argo CD, the
ingress is often shared among multiple applications.
Each application may have its own deployment rules,
allowing for granular control over updates and
configurations. For example, one application might only
update when manually triggered, while another
automatically updates when changes are detected.

The challenge arises because updating Ingress impacts
multiple applications simultaneously. Through this
centralized routing mechanism, you're essentially
juggling the needs of wvarious applications. This
complexity underscores the importance of managing the

cluster effectively, as each change to Ingress affects the
entire ecosystem of applications.

The Argo CD community is discussing introducing
delegated server-side field permissions. This feature
would allow one application to modify components of
another, easing the burden of managing shared resources
like Ingress. However, it's still under debate, and
alternative solutions may emerge. Other tools, like
Contour, offer a different approach by treating each route
as a separate custom resource, allowing applications to
manage their routing independently.

Ultimately, deploying the ingress marks a shift in the
cluster's dynamics, requiring considerations such as DNS
settings and centralized routing configurations. As a
result, the cluster becomes more specialized and less
disposable as its configuration becomes bespoke to
accommodate the routing needs of various applications.

Bart: Any recommendations for those who aim to keep
their infrastructure reproducible while needing Ingress?

Dan: One approach is abstraction and leveraging
wildcards. While technically, you can deploy an Ingress
without external pointing; I prefer the concept of self-
updating components. Tools like Crossplane or Google
Cloud's Config_Connector allow you to represent non-
Kubernetes resources as Kubernetes objects.
Incorporating such tools into your cluster bootstrap

https://projectcontour.io/
https://www.crossplane.io/
https://cloud.google.com/config-connector/docs/overview
https://cloud.google.com/config-connector/docs/overview

process ensures the dynamic creation of necessary
components.

However, there's a caveat. Despite reproducible clusters,
external components like DNS settings may not be.
Updating name servers remains a manual task. It's a
tricky aspect of operations that needs a perfect solution.

Bart: How do GitOps and Argo CD fit into solving this
challenge?

Dan: GitOps and Argo CD play a crucial role in
managing complex infrastructure, especially with
sensitive data. The key lies in representing all
infrastructure resources, including secrets and
certificates, as Kubernetes objects. This approach
enables Argo CD to track and reconcile them, ensuring
that the desired state defined in Git reflects accurately in
your cluster.

Tools like Crossplane, vCluster (for managing multiple
clusters), or Cluster API (for provisioning additional
clusters) can extend this approach to handle various
infrastructure resources beyond Kubernetes. Essentially,
Git serves as the single source of truth for your entire
infrastructure, with Argo CD functioning as the engine to
enforce that truth.

A common issue with Terraform is that its state can get
corrupted easily because it must constantly monitor
changes. Crossplane often uses Terraform under the

https://www.vcluster.com/
https://cluster-api.sigs.k8s.io/

hood. The problem is not with Terraform's primitives but
with the data store and its maintenance. Crossplane
ensures the data store remains uncorrupted, accurately
reflecting the current state. If changes occur, they appear
as out of sync in Argo CD.

You can then define policies for reconciliation and
updates, guiding the controller on the next steps. This
approach is crucial for managing infrastructure
effectively. Using etcd as your data store is an excellent
pattern and likely the future of infrastructure
management.

Bart: What would happen if the challenges of managing
Kubernetes infrastructure extend beyond handling
ingress traffic to managing sensitive information like
state secrets and certificates? This added complexity
could lead to a "pet" cluster scenario. Would you think
backup and recovery tools like Velero would be easier to
use without these additional challenges?

Dan: I need to familiarize myself with Velero. Can you
tell me about it?

Bart: Velero is a tool focused on backing up and
restoring Kubernetes resources. Since you mentioned
Argo CD and custom resources earlier, I'm curious about
your approach to backing up persistent volumes. How
did you manage disaster recovery in your home lab when
everything went haywire?

https://velero.io/

Dan: I've used Longhorn for volume restoration, and
clear protocols were in place. I'm currently exploring
Velero, which looks like a promising tool for data
migration.

Managing data involves complexities like caring for a
pet, requiring careful handling and migration. Many
people need help managing stateful workloads in
Kubernetes. Fortunately, most of my stateful workloads
in Kubernetes can rebuild their databases if data is lost.
Therefore, data loss is manageable for me. Most of the
elements I work with are replicable. Any items needing
persistence between sessions are stored in Git or a
versioned, immutable secret repository.

Bart: It's worth noting, especially considering what
happened with your home lab. Should small startups
prioritize treating their clusters like cattle, or is ClickOps
sufficient?

Dan: It depends on the use cases. vCluster, a project I'm
fond of, is particularly well-suited for creating
disposable development clusters, providing developers
with isolated sandboxes for testing and experimentation.
It allows deploying a virtualized cluster on an existing
Kubernetes setup, which saves significantly on ingress
costs, especially on platforms like AWS, where you can
consolidate ingress into one.

Another example is using Argo CD's application sets to

create full-stack environments for each pull request in a
Git repository. These environments, which include a
virtual cluster, are unique to each pull request but remain
completely disposable and easily recreated, much like
cattle.

However, managing ingress for disposable clusters can
be challenging. When deployed and applied to vClusters,
ingress needs custom configurations, requiring separate
tracking and maintenance. Despite this, it's still
beneficial to prioritize treating infrastructure as
disposable. For example, while my on-site Kubernetes
cluster is a "pet" that requires careful maintenance, its
nodes are considered "cattle" that can be replaced or
reconfigured without disrupting overall operations. This
abstraction is a core principle of Kubernetes and allows
for greater flexibility and resilience.

By abstracting clusters away from custom configurations
and focusing on reproducibility, you can treat them more
like cattle, even if they have some pet-like qualities due
to ingress deployment and DNS configurations. This
commoditization of clusters simplifies management and
enables greater scalability. The more you abstract and
standardize your infrastructure, the smoother your
operations will become. And to be clear, this analogy has
nothing to do with dietary choices.

Bart: If you could rewind time and change anything,

what scenario would you create to avoid writing that
tweet?

Dan: We've been discussing a feature in Argo CD that
allows for delegated field permissions to happen server-
side. It addresses a problem inherent in Kubernetes
architecture, particularly regarding ingress. The current
setup doesn't allow for external delegation of its
components, even though many users operate it that way.
If I could make changes, I might have split ingress into
an additional resource, including routes as a separate
definition that users could manage independently.

Exploring other scenarios where delegated field
permissions would be helpful is crucial. Ingress is the
most obvious example, highlighting an area for potential
improvement. Creating separate routes and resources
could solve this issue without altering Argo CD. This
approach, similar to Contour's, could be a promising
solution. Contour's separate resource strategy
demonstrates learning from Ingress and making
improvements. We should consider adopting tools like
Contour or other service mesh ingress providers, as
several compelling options are available.

Bart: If you had to build a cluster from scratch today,
how would you address these issues whenever possible?

Dan: Sometimes you just have to accept the challenge
and not try to work around it. Setting up ingress and

configuring DNS for a single cluster might not be a big
deal, but it's worth considering a re-architecture if you're
doing it on a large scale, like 250,000 times. For
instance, with Codefresh, many users opt for our hybrid
setup. They deploy our GitOps agent, based on Argo CD,
on their cluster, which then connects to our control
plane.

One of the perks we offer is a hosted ingress. Instead of
setting up ingresses for each of their 5000 Argo CD
instances, users can leverage our hosted ingress, saving
money and configuration headaches. Consider
alternatives like a tunneling system instead of custom
ingress setups, depending on your use case. A hosted
ingress can be a game-changer for large-scale distributed
setups like multiple Argo CD instances, saving costs and
simplifying configurations. Ultimately, re-architecting is
always an option tailored to what works best for you.
Bart: We're nearing the end of the podcast and want to
touch on a closing question, which we are looking at
from a few different angles. How do you deal with the
anxiety of adopting a new tool or practice, only to find
out later that it might be wrong?

Dan: I've seen this dynamic play out. Sometimes,
organizations invest heavily in a tool, only to realize a
few years later that there are better fits. Take the example
of a company transitioning to Argo workflows for CICD

and deployment, only to discover that Argo CD would
have been a better fit for most of their use cases.
However, these transitions are well-spent efforts. In their
case, the journey through Argo workflows paved the way
for a smoother transition to Argo CD. Sometimes,
detaching the wrong direction is necessary to reach the
correct destination faster.

You can only sometimes foresee the ideal solution from
where you are, and experimenting with different tools is
part of the learning process. It's essential not to dwell on
mistakes but to learn from them and move forward. After
all, even if a tool ultimately proves to be the wrong
choice, it often still brings value. The key is recognizing
when a change is needed and adapting accordingly.
Mistakes only become fatal if we fail to acknowledge
and learn from them.

Bart: We stumbled upon your blog, Today Was
Awesome, which hasn't seen an update in a while. You
wrote a post about Bitcoin, priced at around $450 in
2015. Are you a crypto millionaire now?

Dan: Not quite! Crypto is a fascinating topic, often
sparking wild debates. While there's no shortage of
scams in the crypto world, there's also genuine
innovation happening. I dabbled in Bitcoin early on and
even mined a bit to understand its potential use cases
better. One notable experience was mentoring at Hack

https://todaywasawesome.com/
https://todaywasawesome.com/
https://todaywasawesome.com/why-a-bitcoin-crash-could-be-great-for-bitcoin/
https://hackthenorth.com/

the North, a massive hackathon where numerous projects
leveraged Ethereum. I strategically sold my Bitcoin for
Ethereum, which turned out well. However, I'm still
waiting on those Lambos—I'm not quite at millionaire
status yet!

Bart: Your blog covers many topics, including one post
titled "What are we really supposed to learn from fairy
tales.” How did you decide on such diverse content?

Dan: I can't recall the exact inspiration, but my wife and
I often joke about how outdated the moral lessons in
fairy tales feel. Exploring their relevance in today's
world is an interesting angle to explore.

Bart: What's next for you? More fairy tales, moon-
bound Lamborghinis, or snowboarding adventures?
Also, let's discuss your recent tweet about making your
bacon. How did that start?

Dan: Ah, yes, making bacon! It's surprisingly simple.
First, you get pork belly and cure it in the fridge for
seven to ten days. Then, you smoke it for a couple of
hours.

My primary motivation was to avoid the nitrates found
in store-bought bacon linked to health issues. Homemade
bacon tastes better, is of higher quality, and is cheaper.
My freezer now overflows with homemade bacon, which
makes for a unique and well-received gift. People love
the taste; overall, it's been a rewarding and delicious

https://hackthenorth.com/
https://todaywasawesome.com/what-are-we-really-supposed-to-learn-from-fairy-tales/
https://todaywasawesome.com/what-are-we-really-supposed-to-learn-from-fairy-tales/

effort!

Bart: Regardless of dietary choices, considering where
your food comes from and being involved in the process
—whether by growing your food or making it yourself
and turning it into a gift for others—creates a different,
enriching experience. What's next for you?

Dan: This year, my focus is on environment
management and promotion. In the Kubernetes world,
we often think about applications, clusters, and instances
of Argo CD to manage everything. We're working on a
paradigm shift: we think about products instead of
applications. In our context, a product is an application
in every environment in which it exists. Hence, if you
deploy a development application, move it to stage, and
finally to production, you're deploying the same
application with variations three times. That's what we
call a product. We’re shifting from thinking about where
an application lives to considering its entire life cycle.
Instead of focusing on clusters, we think about
environments because an environment might have many
clusters.

For instance, retail companies like Starbucks, Chick-fil-
A, and Pizza Hut often have Kubernetes clusters on-site.
Deploying to US West might mean deploying to 1,300
different clusters and 1,300 different Argo CD instances.
We abstract all that complexity by grouping them into

the environments bucket. We focus on helping people
scale up and build their workflow using environments
and establishing these relationships. The feedback has
been incredible; people are amazed by what we’re
demonstrating.

We're showcasing this at ArgoCon next month in Paris.
After that, I plan to do some snowboarding and then
make it back in time for the birth of my fifth child.

Bart: That's a big plan. 2024 is packed for you. If people
want to contact you, what's the best way to do it?

Dan: Twitter is probably the best. You can find me at
@todaywasawesome. If you visit my blog and leave
comments, I won't see them, as it's more of an archive
now. I keep it around because I worked on it ten years
ago and occasionally reference something I wrote.

You can also reach out on LinkedIn, GitHub, or Slack. I
respond slower on Slack, but I do get to it eventually.

Chapter 3

eBPF and the
Future of
Service Meshes

eBPF, Sidecars, and the Future of the
Service Mesh, William Morgan

Kubernetes and service meshes may seem complex, but
not for William Morgan, an engineer-turned-CEO who
excels at simplifying the intricacies. In this enlightening
podcast, he shares his journey from AI to the cloud-
native world with Bart Farrell.

Discover William's cost-saving strategies for service
meshes, gain insights into the ongoing debate between
sidecars, Ambient Mesh, and Cilium Cluster Mesh, his
surprising connection to Twitter's early days and unique
perspective on balancing tech expertise with the humility
of being a piano student.

You can watch (or listen) to this interview here.

Bart: Imagine you've just set up a fresh Kubernetes
cluster. What's your go-to trio for the first tools to
install?

William: My first pick would be Linkerd. It's a must-
have for any Kubernetes cluster. I then lean towards
tools that complement Linkerd, like Argo and cert-
manager. You're off to a solid start with these three.

Bart: Cert Manager and Argo are popular choices,
especially in the GitOps domain. What about Flux?

https://kube.fm/service-mesh-william
https://linkerd.io/
https://argo-cd.readthedocs.io/en/stable/
https://cert-manager.io/
https://cert-manager.io/
https://fluxcd.io/

William: Flux would work just fine. I don't have a
strong preference between the two. Flux and Argo are
great options, especially for tasks like progressive
delivery. When paired with Linkerd, they provide a
robust safety net for rolling out new code.

Bart: As the CEO, who are you accountable to? Could
you elaborate on your role and responsibilities?

William: Being a CEO is an exciting shift from my
previous role as an engineer. I work for myself, and I
must say, I’'m a demanding boss. As a CEO, I focus on
the big picture and align everyone toward a common
goal. These are the two skills I’ve had to develop rapidly
since transitioning from an engineer, where my primary
concern was writing and maintaining code.

Bart: From a technical perspective, how did you
transition into the cloud-native space? What were you
doing before it became mainstream?

William: My early career was primarily focused on Al,
NLP, and machine learning long before they became
trendy. I thought I’d enter academia but realized I
enjoyed coding more than research.

I worked at several Bay Area startups, mainly in NLP
and machine learning roles. I was part of a company
called PowerSet, which was building a natural language
processing engine and was acquired by Microsoft. I then
joined Twitter in its early days, around 2010, when it had

https://en.wikipedia.org/wiki/https://en.wikipedia.org/wiki/Natural_language_processing

about 200 employees. I started on the AI side but
transitioned to infrastructure because I found it more
satisfying and challenging. We were doing what I now
describe at Twitter as cloud-native, even though the
terminology differed. We didn’t have Kubernetes or
Docker, but we had Mesos, the JVM for isolation, and
cgroups for a basic form of containerization. We
transitioned from a monolithic Ruby on Rails service to
a massive microservices deployment. When 1 left
Twitter, we tried to apply those same ideas to the
emerging world of Kubernetes and Docker.

Bart: How do you keep up with the rapid changes in the
Kubernetes and cloud-native ecosystems, especially
transitioning from infrastructure and AI/NLP?

William: My current role primarily shapes my strategy. I
learn a lot from the engineers and users of Linkerd, who
are at the forefront of these technologies. I also keep
myself updated by reading discussions on Reddit
platforms like r/kubernetes and r/Linkerd. Occasionally,
I contribute to or follow discussions on Hacker News.
Overall, my primary source of knowledge comes from
the experts I work with daily, giving me valuable
insights into the latest developments.

Bart: If you could return to your time at Twitter or even
before that, what one tip would you give yourself?

William: I'd tell myself to prioritize impact. As an

https://mesos.apache.org/
https://www.reddit.com/r/linkerd/new/
https://www.reddit.com/r/kubernetes/
https://www.reddit.com/r/linkerd/new/
https://news.ycombinator.com/

engineer, I was obsessed with building and exploring
new technologies, which was rewarding. However, I
later understood the value of stepping back to see where
I could make a real difference in the company.
Transitioning my focus to high-impact areas, such as
infrastructure at Twitter, was a turning point. Despite my
passion for NLP, I realized that infrastructure was where
I could truly shine. Always look for opportunities where
you can make the most significant impact.

Bart: Let’s focus on "Sidecarless eBPEF Service Mesh
Sparks Debate," which follows up on your previous
article “eBPF, sidecars, and the future of the service
mesh.” You're one of the creators of Linkerd. For those
unfamiliar, what exactly is a service mesh? Why would
someone need it, and what value does it add?

William: There are two ways to describe service mesh:
what it does and how it works. Service mesh is an
additional layer for Kubernetes that enhances key areas
Kubernetes doesn't fully address.

The first area is security. It ensures all connections in
your cluster are encrypted, authorized, and authenticated.
You can set policies based on services, gRPC methods,
or HTTP routes, like allowing Service A to talk to /foo
but not /bar.

The second area is reliability. It enables graceful
failovers, transparent traffic shifting between clusters,

https://www.techtarget.com/searchitoperations/news/365535362/Sidecarless-eBPF-service-mesh-sparks-debate
https://www.techtarget.com/searchitoperations/news/365535362/Sidecarless-eBPF-service-mesh-sparks-debate
https://buoyant.io/blog/ebpf-sidecars-and-the-future-of-the-service-mesh
https://buoyant.io/blog/ebpf-sidecars-and-the-future-of-the-service-mesh

and progressive delivery. For example, deploying new
code and gradually increasing traffic to it to avoid
immediate production traffic. It also includes
mechanisms like load balancing, circuit breaking, retries,
and timeouts.

The last area is observability. It provides uniform metrics
for all workloads across all services, such as success
rates, latency distribution, and traffic volume.
Importantly, it does this without requiring changes to
your application code.

The most prevalent method today involves using many
proxies. This approach has become feasible thanks to
technological advancements like Kubernetes and
containers, which simplify the deployment and
management of many proxies as a unified fleet. A decade
ago, deploying 10,000 proxies would have been absurd,
but it is feasible and practical today. The specifics of
deploying these proxies, their locations, programming
languages, and practices are subject to debate. However,
at a high level, service meshes work by running these
layer seven proxies that understand HTTP, HT'TP2, and
gRPC traffic and enable various functionalities without
requiring changes to your application code.

Bart: Can you briefly explain how the data and control

planes work in service meshes, especially compared to
the older sidecar model with an extra container?

https://blog.envoyproxy.io/service-mesh-data-plane-vs-control-plane-2774e720f7fc
https://blog.envoyproxy.io/service-mesh-data-plane-vs-control-plane-2774e720f7fc

William: A service mesh architecture consists of two
main components: a control plane and a data plane. The
control plane allows you to manage and configure the
data plane, which directs network traffic within the
service mesh. In Kubernetes, the control plane operates
as a collection of standard Kubernetes services, typically
running within a dedicated namespace or across the
entire cluster.

The data plane is the operational core of a service mesh,
where proxies manage network traffic. The sidecar
model, employed by service meshes like Linkerd,
deploys a dedicated proxy alongside each application
pod. Therefore, a service mesh with 20 pods would have
20 corresponding proxies. The overall efficiency and
scalability of the service mesh rely heavily on the size
and performance of these individual proxies.

In the sidecar model, service A and service B
communication flows through service A's and service B's
proxy. Service A sends its message to its sidecar proxy,
and then the service A proxy forwards it to service B's
sidecar proxy. Finally, service B's proxy delivers the
message to service B itself. This indirect communication
path adds extra hops, leading to a slight increase in
latency. You must carefully consider the potential
performance impacts to ensure that service mesh benefits
outweigh the trade-offs.

Bart: We've been discussing the benefits of service
meshes, but running an extra container for each pod
sounds expensive. Does cost become a significant issue?

William: Service meshes have a compute cost, just like
adding any component to a system. You pay for CPU and
memory, but memory tends to be the more significant
concern, as it can force you to scale up instances or
nodes.

However, Linkerd has minimized this issue with a
"micro proxy" written in Rust. Rust's strict memory
management allows fast, lightweight proxies and avoids
memory vulnerabilities like buffer overflows, which are
common in C and C++. Studies from both Google and
Microsoft have shown that roughly 70% of security bugs
in C and C++ code are due to memory management
eITors.

Our choice of Rust as the programming language in
2018 was a calculated risk. Rust offers the best of both
worlds: the speed and control of languages like C/C++
and the safety and ease of use of languages with runtime
environments like Go. Rust and its network library
ecosystem were still relatively young at that time. We
invested significantly in underlying libraries like Tokio,
Tower, and H2 to build the necessary infrastructure.

The critical role of the data plane in handling sensitive
application data drove this decision. We ensured its

https://security.googleblog.com/2024/03/secure-by-design-googles-perspective-on.html
https://tokio.rs/
https://github.com/tower-rs/tower

reliability and security. Rust enables us to build small,
fast, and secure proxies that scale with traffic, typically
using minimal memory, directly translating to the user
experience. Instead of facing long response times (like 5-
second tail latencies), users experience faster interactions
(closer to 30 milliseconds). A service mesh can optimize
these tail latencies, improving user experience and
customer retention. Choosing Rust has proven to be
instrumental in achieving these goals.

While cost is a factor, the actual cost often stems from
operational complexity. Do you need dedicated
engineers to maintain complex proxies, or does the
system primarily work independently? That human cost
usually dwarfs the computational one.

Our design choices have made managing Linkerd’s costs
relatively straightforward. However, for other service
meshes, costs can escalate if the proxies are large and
resource-intensive. Even so, the more significant cost is
often not the resources but the operational overhead and
complexity. This complexity can demand considerable
time and expertise, increasing the overall cost.

Bart: You raise a crucial point about the human aspect.
While we address technical challenges, the time spent
resolving errors detracts from other tasks. The
community has developed products and projects to
tackle these concerns and costs. One such example is

Istio with Ambient Mesh. Another approach is
sidecarless service meshes like Cilium Cluster Mesh.
Can you explain what Ambient Mesh is and how it
enhances the classic sidecar model of service meshes?

William: We've delved deep into both of these options in
Linkerd. While there might come a time when adopting
these projects makes sense for us, we're not there yet.

Every decision involves trade-offs regarding distributed
systems, especially in production environments within
companies where the platform is a tool to support
applications. At Linkerd, our priority is constantly
reducing the operational workload.

Ambient Mesh and eBPF aren't primarily reactions to
complexity but responses to the practical annoyances of
sidecars. Their key selling point is eliminating the need
for sidecars. However, the real question is: What's the
cost of this shift? That's where the analysis becomes
crucial.

In Ambient Mesh, rather than having sidecar containers,
you utilize connective components, such as tunnels,
within the namespace. These tunnels communicate with
proxies located elsewhere in the cluster. So essentially,
you have multiple proxies running outside of the pod,
and the pods use these tunnels to communicate with the
proxies, which then handle specific tasks.

This setup is indeed intriguing. As mentioned earlier,

https://istio.io/

running sidecars can be challenging due to specific
implications. One such implication is the cost factor,
which we discussed earlier. In Linkerd’s case, this is a
minor concern. However, a more significant implication
is the need to restart the pod to upgrade the proxy to the
latest version, given the immutability of pods in
Kubernetes.

This situation necessitates managing two separate
updates: one to keep the applications up-to-date and
another to upgrade the service mesh. Therefore, while
the setup has advantages, it also requires careful
management to ensure smooth operation and optimal
performance.

We operate the proxy as the first container for various
reasons, which can lead to friction points, such as when
using kubectl logs . Typically, when you request logs,
you're interested in your application's logs, not the
proxy's. This friction, combined with a desire for
networking to operate seamlessly in the background,
drives the development of solutions like Ambient and
eBPF, which aim to eliminate the need for explicit
sidecars.

Both Ambient and eBPF solutions, which are closely
related, are reactions to this sentiment of not wanting to
deal with sidecars directly. The aim is to make sidecars
disappear. Take Istio and most service meshes built on

https://istio.io/

Envoy, for instance. Envoy is complex and memory-
intensive and requires constant attention and tuning
based on traffic specifics.

Challenges with sidecars are more of a cloud-native
trend to market solutions, like writing a blog post
proclaiming the death of sidecars rather than being
specific to Linkerd. They can sometimes be an
inaccurate reflection of the reality of engineering.

In Ambient, eliminating sidecars by running the proxy
elsewhere and using tunnel components allows for
separate proxy maintenance without needing to reboot
applications for upgrades. However, in a Kubernetes
environment, the idea is that pods should be rebootable
anytime. Kubernetes can reschedule pods as needed,
which aligns with the principles of building applications
as distributed systems. Yet, there are legacy applications
or specific scenarios where rebooting could be more
convenient, making the sidecar approach less appealing.

Historically, running cron jobs with sidecar proxies in
Kubernetes posed a significant challenge. Kubernetes
lacked a built-in mechanism to signal the sidecar proxy
when the main job was complete, necessitating manual
intervention to prevent the proxy from running
indefinitely. This manual process went against the core
principle of service mesh, which aims to decouple
services from their proxies for easier management and

https://www.envoyproxy.io/
https://thenewstack.io/ambient-mesh-no-sidecar-required/

scalability.

Thankfully, one significant development is the Sidecar
Container Kubernetes Enhancement Proposal. With this
enhancement, you can designate your proxy as a sidecar
container, leading to several benefits, like jobs
terminating the proxy once finished and eliminating
unnecessary resource consumption.

For Linkerd, adopting Ambient mesh architecture
introduces more complexity than benefits. The additional
components, like the tunnel and separate proxies, add
unnecessary layers to the system. Unlike Istio, which has
encountered issues due to its architecture, Linkerd's
existing design hasn't faced similar challenges.
Therefore, the trade-offs associated with Ambient aren't
justified for Linkerd.

In contrast, the sidecar model offers distinct advantages.
It creates clear operational and security boundaries at the
pod level. Each pod becomes a self-contained unit,
making independent decisions regarding security and
operations, aligning with Kubernetes principles, and
simplifying management in a cloud-native environment.

This sidecar approach is crucial for implementing zero-
trust security. The critical principle of zero trust is to
enforce security policies at the most granular level
possible. Traditional approaches relying on a perimeter
firewall and implicitly trusting internal components are

https://kubernetes.io/blog/2023/08/25/native-sidecar-containers/
https://kubernetes.io/blog/2023/08/25/native-sidecar-containers/
https://www.cloudflare.com/learning/security/glossary/what-is-zero-trust/#:~:text=Zero%20Trust%20security%20is%20an,outside%20of%20the%20network%20perimeter.
https://www.cloudflare.com/learning/security/glossary/what-is-zero-trust/#:~:text=Zero%20Trust%20security%20is%20an,outside%20of%20the%20network%20perimeter.

no longer sufficient. Instead, each security decision must
be made independently at every system layer. This
granular enforcement is achieved by deploying a sidecar
proxy within each application pod, acting as a security
boundary and enabling fine-grained control over network
traffic, authentication, and authorization.

In Linkerd, every request undergoes a rigorous security
check within the pod. This check includes verifying the
validity of the TLS encryption, confirming the client's
identity through cryptographic algorithms, and ensuring
the request comes from a trusted source. Additionally,
Linkerd checks whether the request can access the
specific resource or method it's trying to reach. This
multi-layered scrutiny happens directly inside the pod,
providing the highest possible level of security within
the Kubernetes framework. Maintaining this tight
security model is crucial, as any deviation, like
separating the proxy and TLS certificate, weakens the
model and introduces potential vulnerabilities.

Bart: The next point I'd like to discuss has garnered
significant attention in recent years through Cilium
Service Mesh and various domains. What is eBPF?

William: eBPF is a kernel technology that enables the
execution of specific code within the kernel, offering
significant advantages. Firstly, operations within the
kernel are high-speed, eliminating the overhead of

https://cilium.io/use-cases/service-mesh/
https://cilium.io/use-cases/service-mesh/

context switching between kernel and wuser space.
Secondly, the kernel has unrestricted access to all system
resources, requiring robust security measures to ensure
eBPF programs are safe. This powerful technology
empowers developers to create highly efficient and
secure solutions for various system tasks, particularly
networking, security, and observability.

Traditionally, user-space programs lacked direct access
to kernel resources, relying on gsystem calls to
communicate with the kernel. While providing security,
this syscall boundary introduced cost overhead,
especially with frequent requests like network packet
processing.

eBPF revolutionized this by enabling user-defined code
to run within the kernel with stringent safety measures.
The number of instructions an eBPF program can
execute is limited, and infinite loops are prohibited to
prevent resource monopolization. The bytecode verifier
meticulously ensures every possible execution path can
be explored to avoid unexpected behavior or malicious
activity. The bytecode is also verified for GPL
compliance by checking for specific strings in its initial
bytes.

These security measures make eBPF a powerful but
restrictive mechanism, enabling previously unattainable
capabilities. Understanding what eBPF can and cannot

https://phoenixnap.com/kb/system-call#:~:text=A%20system%20call%20is%20an,functionalities%20from%20the%20OS's%20kernel.
https://opensource.stackexchange.com/questions/6549/does-program-that-uses-ebpf-module-needs-to-be-distributed-under-gpl
https://opensource.stackexchange.com/questions/6549/does-program-that-uses-ebpf-module-needs-to-be-distributed-under-gpl

do is crucial, despite marketing claims that might blur
these lines. While many promote eBPF as a
groundbreaking solution that could eliminate the need
for sidecars, the reality is more nuanced. It's crucial to
understand its limitations and not be swayed by
marketing hype.

Bart: There appears to be some confusion regarding the
extent of limitations associated with eBPF. If eBPF has
limitations, does that imply that these limitations
constrain all service meshes using eBPF?

William: The idea of an eBPF-based service mesh can
sometimes need clarification. In reality, the Envoy proxy
still handles the heavy lifting, even in these eBPF-
powered meshes. eBPF has limitations, especially in the
network space, and can't fully replace the functionality
of a traditional proxy.

While eBPF has many applications, including security
and performance monitoring, its most interesting
potential lies in instrumenting applications. The kernel
can directly measure CPU usage, function calls, and
other performance metrics by residing in the kernel.

However, when it comes to networking, eBPF faces
significant challenges. Maintaining large amounts of
state, essential for many network operations, is difficult,
bordering on impossible. This challenge highlights the
limitations of eBPF in entirely replacing traditional

networking components like proxies.

The role of eBPF in networking, particularly within
service meshes, is often overstated. While it excels in
certain areas, like efficient TCP packet processing and
simple metrics collection, other options exist beyond
traditional proxies. Complex tasks like HI'TP2 parsing,
TLS handshakes, or layer seven routings are challenging,
if possible, to implement purely with eBPF.

Some projects attempt complex eBPF implementations
for these tasks but often involve convoluted
workarounds that sacrifice performance and practicality.
In practice, eBPF is typically used for layer 4 (transport
layer) tasks, while user-space proxies like Envoy handle
more complex layer 7 (application layer) operations.

Service meshes like Cilium, despite their claims of being
sidecar-less, often rely on daemonset proxies to handle
these complex tasks. While eliminating sidecars, this
approach introduces its own set of problems. Security is
compromised as TLS certificates are mixed in the
proxy's memory, and operational challenges arise when
the daemonset goes down, affecting seemingly random
pods scheduled on that machine.

Linkerd, having experienced similar issues with its first
version (Linkerdl.x) running as a daemonset, opted for
the sidecar model in subsequent versions. Sidecars
provide clear operational and security boundaries,

https://blog.px.dev/ebpf-http2-tracing/
https://github.com/linkerd/linkerd
https://github.com/linkerd/linkerd

making management and troubleshooting easier.

Looking ahead, eBPF can still be a valuable tool for
service meshes. Linkerd, for instance, could significantly
speed up raw TCP proxying by offloading tasks to the
kernel. However, for complex layer seven operations, a
user-space proxy remains essential.

The decision to use eBPF and the choice between
sidecars and daemonsets are distinct considerations, each
with advantages and drawbacks. While eBPF offers
powerful capabilities, it doesn't inherently dictate a
specific proxy architecture. Choosing the most suitable
approach requires careful evaluation of the system's
requirements and trade-offs.

Bart: Can you share your predictions about conflict or
uncertainty concerning service meshes and sidecars for
the next few years? Is there a possibility of resolving
this? Should we anticipate the emergence of new
groups? What are your expectations for the near and
distant future?

William: While innovation in this field is valuable,
relying solely on marketing over technical analysis needs
more appeal, especially for those prioritizing tangible
customer benefits.

Regarding the future of service meshes, their value

proposition is now well-established. The initial hype has
given way to a practical understanding of their necessity,

with users selecting and implementing solutions without
extensive deliberation. This maturity is a positive
development, shifting the focus from explaining the need
for a service mesh to optimizing its usage.

Functionally, service meshes converge on core features
like MTLS, load balancing, and circuit breaking.
However, a significant area of development and our
primary focus is mesh expansion, which involves
integrating non-Kubernetes components into the mesh.
We have a big_announcement regarding this in mid-
February.

Bart: That sounds intriguing. Please give us a sneak
peek into what this announcement is about.

William: It is about Linkerd 2.15! The release of
Linkerd 2.15 is a significant step forward. It introduces
the ability to run the data plane outside Kubernetes,
enabling seamless TLS communication for both VM and
pod workloads.

The industry mirrors this direction, as evidenced by
developments like the Gateway API, which converges to
handle both ingress and service mesh configuration
within Kubernetes. This unified approach allows
consistent configuration primitives for traffic entering,
transiting, and exiting the cluster.

The industry will likely focus on refining details like
eBPF integration or the advantages of Ambient Mesh

https://linkerd.io/2024/02/21/announcing-linkerd-2.15/

while the fundamental value proposition of service
meshes remains consistent. I'm particularly excited about
how these advancements can be applied across entire
organizations, starting with securing and optimizing
Kubernetes environments and extending these benefits to
the broader infrastructure.

Bart: Shifting away from the professional side, we heard
you have an interesting tattoo. Is it of Linkerd, or what is
it about?

William: It’s just a temporary one. We handed them out
at KubeCon last year as part of our swag. While
everyone else gave out stickers, we thought we'd do
something more extraordinary. So, we made temporary
tattoos of Linky the Lobster, our Linkerd mascot.

When Linkerd graduated within the CNCEF, reaching the
top tier of project maturity, we needed a mascot. Most
mascots are cute and cuddly, like the Go Gopher. We
wanted something different, so we chose a blue lobster—
an unusual and rare creature reflecting Linkerd's unique
position in the CNCF universe.

The tattoo featured Linky the Lobster crushing some
sailboats, which is part of our logo. It was a fun little
easter egg. If you were at KubeCon, you might have seen
them. That event was in Amsterdam.

Bart: What's next for you? Are there any side projects or
new ventures you're excited about?

https://twitter.com/wm/status/1584940854384685056
https://go.dev/blog/gopher

William: I'm devoting all my energy to Linkerd and
Buoyant. That takes up most of my focus. Outside of
work, I'm a dad. My kids are learning the piano, so I
decided to start learning, too. It's humbling to see how
fast they pick it up compared to me. As an adult learner,
it's a slow process. It's interesting to be in a role where
I'm the student, taking lessons from a teacher who's
probably a third my age and incredibly talented. It’s an
excellent reminder to stay humble, especially since much
of my day involves being the authority on something. It’s
a nice change of pace and a bit of a reality check.

Bart: That's a good balance. It's important to remind
people that doing something you could be better at is
okay. As a kid, you're used to it—no expectations, no
judgment.

William: Exactly. However, it can be a struggle as an
adult, especially as a CEO. I've taught Linkerd to
hundreds of people without any panic, but playing a
piano recital in front of 20 people is terrifying. It's the
complete opposite.

Bart: If people want to contact you, what's the best way?
William: You can email me at william@buoyant.io, find
me on Linkerd Slack at slack.linkerd.io, or DM me at

@WM on Twitter. I'd love to hear about your challenges
and how I can help.

https://buoyant.io/
https://mailto:william@buoyant.io/

Chapter 4

The Long-Term
Support Debate

Kubernetes Needs a Long Term Support
(LTS) Release Plan, Matthew Duggan

Kubernetes updates can be complex. However, Principal
Security Engineer Mathew Duggan proposes a solution:
a Long-Term Support (LTS) release plan.

In a podcast with Bart Farrell, Duggan explains how LTS
could revolutionize cloud-native operations. They
discuss essential strategies for open-source beginners
and achieving stable, reliable deployments.

You can watch (or listen) to this interview here.

Bart: The cloud-native world moves fast. How do you
stay updated with blogs, podcasts, or other methods?

Mat: I have a few go-to sources. I prefer Lobsters over
Hacker News for its focus on programming topics.
KubeWeekly is essential for me to discover the latest
developments. I also rely heavily on RSS feeds,
especially those from cloud providers announcing new
features and services.

Attending online conferences is also crucial for me to
stay informed. Conferences are the best way to stay
updated on the latest industry trends. If I could advise
my younger self, it would be to be more involved in
open source. As a young programmer, I hesitated to

https://kube.fm/kubernetes-lts-mat
https://lobste.rs/
https://news.ycombinator.com/
https://www.cncf.io/kubeweekly/

contribute, feeling I didn't know enough. Looking back, I
realize that was a missed opportunity.

Bart: What advice would you give those unsure how to
start contributing to open source?

Mat: If you're new to open source, I recommend starting
with sites like ‘My First Issue,” which offer beginner-
friendly ways to contribute. It's a good idea to begin by
improving a project's documentation. This path could
involve clarifying concepts, adding detailed
explanations, or creating diagrams. These valuable
contributions help you learn about the project's
workflow, contributors, and expectations.

Another option is to try Linux packaging. It may sound
complicated, but it involves preparing someone else's
code, assigning a version number, signing it with a GPG
key, and distributing it. It’s a detailed but structured
process; however, you can find mentors who will guide
you. Since you're not writing the code yourself, it's a less
intimidating way to get involved in open source.

Bart: In our previous episode with you, we discussed
startups' concerns about potential application disruptions
and the difficulty of updating their Kubernetes clusters.
Your article Why Kubernetes Needs an LTS addresses
this concern. Is Kubernetes as unstable as some people
claim?

Mat: Due to its inherent complexity, finding people

https://goodfirstissue.dev/
https://wiki.debian.org/Packaging
https://gnupg.org/
https://gnupg.org/
https://kube.fm/foolproof-gke-mat
https://matduggan.com/why-kubernetes-needs-an-lts/

experienced in managing Kubernetes is challenging. This
complexity arises from the numerous layers, including
the physical infrastructure, virtual machines, cloud
services, Kubernetes, and other elements like network
overlays and service meshes. FEach layer adds
complexity, and to truly master Kubernetes, you need to
understand how all these pieces interact.

While the core Kubernetes engine has become more
reliable and accessible to upgrade, the explosion of third-
party integrations and applications built on top of it has
added further complexity. Managing dependencies with
third-party integrations and figuring out safe upgrade
paths can be difficult.

Bart: Kubernetes has a continuous release cycle. Can
you explain what a Kubernetes release cycle involves?

Mat: Kubernetes follows a rapid release cadence, with
new versions typically released every four months. Each
version, such as 1.2.X, has a 14-month lifecycle. For the
first 12 months, the Kubernetes team provides bug fixes
and security updates to maintain the platform's stability:.
The remaining two months serve as a grace period for
users to upgrade to the next version before the current
one is retired.

Compared to traditional Linux distributions, which may
have release cycles spanning years, Kubernetes' faster
pace can be challenging for less experienced teams.

https://en.wikipedia.org/wiki/Overlay_network
https://en.wikipedia.org/wiki/Overlay_network
https://en.wikipedia.org/wiki/Service_mesh

Dependencies further complicate the process. For
example, projects like

Istio usually only supports the latest three Kubernetes
versions. This practice is becoming more common,
putting pressure on teams to update their systems.

Cloud providers may offer extended support for specific
Kubernetes versions, lasting anywhere from two to 12
months. This gives teams more time to plan and execute
upgrades, easing the burden of frequent changes.

Bart: Upgrading Kubernetes seems more complicated
than updating other software. Why is that, and how can
we make the process easier?

Mat: While Kubernetes manages application
compatibility well through API versioning, a successful
upgrade involves deeply understanding the entire cluster
ecosystem, including third-party integrations, CNI
plugins, and storage configurations.

Cloud providers like GCP implement API version checks
to prevent upgrades if deprecated calls are detected.
Tools like Pluto offer similar checks.

Features like cron jobs for scheduled tasks and stateful
deployments for persistent data add further complexity,
especially when moving databases into Kubernetes.
Managing persistent volumes and handling disk
operations, such as detaching and reattaching disks,
require careful attention.

https://istio.io/
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins
https://cloud.google.com/
https://github.com/FairwindsOps/pluto
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset
https://kubernetes.io/docs/concepts/storage/persistent-volumes

A smooth upgrade requires a meticulous plan. This
process includes reviewing release notes, understanding
your software and its dependencies, and having in-depth
knowledge of crucial Kubernetes components like etcd,
the control plane, and the API server. Smaller teams
might find this overwhelming.

Bart: Are teams expected to manage Kubernetes
upgrades independently, or is community support
available?

Mat: Upgrading Kubernetes is a significant challenge,
especially for smaller or less experienced teams.
However, there's a strong community and various tools
available to help.

Understanding the different upgrade strategies, each with
pros and cons, is crucial. A team's risk tolerance will
influence their choice.

For example, blue-green deployments involve creating a
new cluster with the updated Kubernetes version and
gradually shifting traffic. This method is safe but
expensive, as you have to run two clusters
simultaneously.

In contrast, in-place upgrades involve updating the
existing cluster. This upgrade approach is faster but
potentially riskier. Tools like Velero can help mitigate
this risk by allowing you to roll back to a previous state
if something goes wrong.

https://velero.io/

Managing the control plane involves ensuring different
components within the cluster, such as the kube-
apiserver, kubelet, and kube-proxy, are running
compatible versions, known as version skew.

There's no one-size-fits-all approach to Kubernetes
upgrades. However, tools like Kubespray can automate
the setup and maintenance of Kubernetes clusters,
including configuring the underlying OS. Community
projects like Flatcar Linux offer a container-optimized
OS that can be managed remotely and updated
automatically. These tools help to reduce the complexity
and manual effort involved in managing the operating
systems on which Kubernetes nodes run.

Bart: How do cloud providers help with the upgrade
process?

Mat: Amazon EKS has improved the control plane
management, and tools like Karpenter automate worker
node provisioning, making EKS upgrades smoother.
Microsoft Azure has also made upgrading easier by
offering automatic upgrades for Kubernetes clusters.
Google Cloud Platform (GCP) is leading the way with a
comprehensive set of upgrade tools. Autopilot, for
example, automates upgrades, reducing the manual effort
GCP users require.

While cloud providers offer many advantages,
challenges remain, particularly in hybrid cloud

https://kubespray.io/
https://www.flatcar.org/
https://aws.amazon.com/eks
https://karpenter.sh/
https://cloud.google.com/kubernetes-engine/docs/concepts/autopilot-overview

environments. Integrating on-premises data centers with
cloud services through Kubernetes and service meshes
adds another layer of complexity to upgrades. Datacenter
limitations and budget constraints can also impact the
feasibility of strategies like blue-green deployments.

Upgrades can be particularly daunting for startups and
smaller teams. While cloud providers offer support, it's
ultimately the users' responsibility to implement robust
backup strategies.

Additionally, while Kubernetes works well for standard
web applications, using it for GPU-intensive tasks, such
as machine learning, makes upgrades even more
complex. These use cases require special care to ensure
compatibility with specific hardware and software
configurations to avoid disruptions or issues related to
hardware compatibility, software dependencies, resource
allocation, scheduling, and scaling of GPU-accelerated
workloads.

Bart: Is it fair for companies to charge a premium for
support for older versions of EKS?

Mat: This is a controversial issue in the Linux
community because of the significant resources required
to backport security updates. Historically, approaches
have varied, with some Linux distributions like Red Hat
charging licensing fees, while others like Debian rely on
Long-Term Support funded by businesses.

https://www.redhat.com/
https://www.debian.org/

The debate centers on the fairness of a one-time cost
model, particularly for organizations that heavily rely on
Kubernetes but lack in-house expertise. With their deep
understanding of each customer's setup, cloud providers
sometimes update older software versions for key clients
to ensure security and smooth operation. They may
charge this service hourly per cluster, potentially
generating substantial revenue. However, the fairness of
this pricing model remains a subject of discussion.

Bart: What are the best practices for scheduling updates
for services? Can automation help with this process?

Mat: There's a wide range of opinions on the ideal level
of automation. While some enthusiasts on platforms like
Hacker News advocate for full automation, envisioning
systems that can effortlessly spin up new clusters with a
single command, the reality for many organizations is
more complex.

Especially in sectors with strict operational frameworks,
like FinOps and government contracting, adherence to
regular and critical update schedules and strict
compliance protocols necessitates a different approach to
automation. These organizations must balance the
efficiency of automation with the rigidity of their
regulatory environments.

Kubernetes has indeed evolved to include features that
ensure safer upgrade paths. These include secure control

https://www.finops.org/

node updates through TLS encryption, Role-Based
Access Control (RBAC), and comprehensive audit
logging. Additionally, Kubernetes can roll back to
previous versions if a failure occurs, such as an
unexpected shutdown, network partitions, or hardware
failures. These improvements have made it increasingly
feasible for companies to align their setups with the
standard Kubernetes configuration, benefiting from the
built-in safety features. This standardization also allows
for integrating new node worker groups, which is crucial
for testing kubelet version compatibility and maintaining
system stability.

However, a consistent industry standard for automation
scripts and their management remains a significant
challenge, especially for medium-sized organizations
looking to automate their Kubernetes upgrades. The
difficulty lies in navigating the complexities of
Kubernetes upgrades while developing custom
automation solutions without a universally accepted
framework.

Bart: Can we stop updating Kubernetes to avoid
potential problems that might arise with updates?

Mat: Some people have explored the idea of making
Kubernetes "read-only," meaning it wouldn't change and
would remain static indefinitely. However, Kubernetes is
designed to evolve, receive new features from its

https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet

developers, and store data, especially with etcd. It's
impractical to turn Kubernetes into a static platform.

Nevertheless, some find the concept of a Kubernetes
version that you set up once and forget about appealing.
While not updating isn't widely supported, it's worth
considering how Google, which regularly updates
products like Chrome OS, influences Kubernetes.

Bart: Would a stable long-term support (LTS)
Kubernetes version benefit sectors like FinOps and the
government? Would this require a consensus from a
Special Interest Group (SIG)?

Mat: A workgroup is already exploring this idea. There
likely wouldn't be much opposition to creating an LTS
version of Kubernetes. The main question is how long
the LTS version would be supported. It would receive
security updates for several years but wouldn't get any
new features or major upgrades after that. Once the LTS
period ends, users will need to create a new Kubernetes
cluster and migrate their applications and data to it.

Support for transitioning away from LTS versions would
likely come from the community and potentially third-
party consultants.

The challenge for the groups working on Kubernetes is
determining the best way to assist users when migrating
from an LTS version to a new one. This situation is
similar to what happens with Linux systems, where it's

https://www.google.com/chromebook/chrome-os
https://github.com/kubernetes/community/blob/master/sig-list.md

common for people to set up new virtual machines and
transfer their data when the old system reaches the end
of its support lifecycle.

Bart: Are there any unexpected features in the upcoming
Kubernetes release?

Mat: The Working Group Long-Term Support (WG
LTS) is working on simplifying the naming scheme for
Kubernetes versions. They aim to use a straightforward
identifier that is intuitive for those familiar with
Kubernetes but might be confusing for those outside the
community.

Another focus of the WG LTS is figuring out how to
handle feature flags for specific parts of the Kubernetes
API. Feature flags allow certain features to be toggled on
or off, and managing them for specific API paths can be
tricky. If they can solve this effectively, it would help
cloud service providers better manage Kubernetes
upgrades for their customers, ensuring everyone is using
the latest and most secure version.

However, organizations that manage their own
Kubernetes clusters (as opposed to using a cloud
provider's managed service) will have a different level of
support and tools for managing upgrades than cloud
providers offer their customers. They'll need to invest in
developing their tools to handle these upgrades.

While the WG LTS's efforts could make upgrades more

accessible for those using managed services, managing
Kubernetes on your own remains challenging.

Bart: Could the extended support for an LTS version
lead to teams favoring it over other versions, potentially
neglecting those with shorter support cycles?

Mat: While an LTS version could become more popular
than other versions, most organizations would likely
continue to use the non-LTS versions. Organizations
heavily invested in Kubernetes and cloud infrastructure
find it relatively easy to upgrade and manage multiple
accounts and clusters, so they wouldn't necessarily need
to rely solely on an LTS version.

Businesses already using Kubernetes, such as local
grocery chains and larger retailers like Chick-fil-A and
IKEA, are equipped to handle it and would welcome the
stability and extended transition period that an LTS
version offers.

For most online companies, upgrading Kubernetes is
becoming more manageable as they either improve their
technical capabilities or rely on their cloud providers for
upgrade prompts. An LTS version would attract those
seeking consistency across their data centers and cloud
operations, enabling them to run Kubernetes more
smoothly, transfer workloads quickly, and reduce
configuration management challenges and hardware
maintenance.

Bart: We spoke with a Chick-fil-A chief architect who
mentioned managing Kubernetes across their 3,000
locations, which could be daunting with constant
upgrades. Are upgrades more of a mental or technical
challenge, or both?

Mat: It's a complex challenge that involves both mindset
and technical aspects. New releases are exciting
opportunities for those deeply involved in the
Kubernetes ecosystem. For example, the Gateway API
excites me because it allows for decoupling HTTP routes
from load balancers.

However, many teams I've worked with view upgrades
differently. These smaller teams prioritize delivering
features and shipping software. For them, upgrades are
risks, not opportunities, similar to our hesitation with
end-of-life programming languages.

Many smaller companies use outdated software versions
to manage their applications because they struggle with
fixing dependency issues. They might say, "We can't
upgrade because of a package dependency," reflecting a
broader resistance to change. This mindset also affects
their approach to cluster management, where the
perceived risks of upgrading often overshadow the
potential benefits. The reluctance to upgrade clusters
usually comes from an "if it ain't broke, don't fix it"
mentality, which is both an encouragement and a

https://gateway-api.sigs.k8s.io/

challenge.

Disaster recovery plans are a recommended best practice
for upgrades. However, many teams find it challenging
to create these plans. The standard advice is to manage
infrastructure as code, launch a new cluster, switch
deployments, update DNS entries, and hope for a smooth
transition. This plan acts as a fallback if the upgrade goes
differently than planned.

Applications are sensitive to their environment, and any
overlooked details can cause failures, so relying solely
on backups is risky. For instance, I faced an unexpected
issue with a service mesh during load testing. If Linkerd
were to fail, causing the proxy on every pod to reject
trafficc the consequences would be severe.
Troubleshooting such issues can be daunting.

Developing a recovery plan for critical and deeply
embedded Kubernetes systems in companies' operations
is challenging. The complexity of Kubernetes leads some
people to attempt partial upgrades, but difficulties in
implementing changes and fear or resistance to
transformation also drive this avoidance.

Kubernetes is known for its complexity, which can
intimidate teams and influence their upgrade approach.
The solution lies in finding a balance between innovation
and caution: a middle ground where teams can take
advantage of new features while carefully managing the

https://en.wikipedia.org/wiki/Infrastructure_as_code
https://linkerd.io/

potential risks of modifying their systems.

Bart: Does the tendency to avoid risk change throughout
one's career, or does it remain constant?

Mat: Early in one's career, the fear of making mistakes
can lead to risk aversion. New roles often come with
imposter syndrome, causing self-doubt and a reluctance
to change. Leaders need to foster growth and confidence
in these individuals.

As people gain experience, they sometimes become
overly cautious and hesitant to make quick decisions,
which can lead to missed opportunities or mistakes.
Making and correcting a significant error is a learning
experience that can make a person more responsible and
careful in the future.

However, attitudes towards risk can evolve. There is a
shift from earlier in my career when we meticulously
executed software releases and followed detailed
instructions. Younger professionals today are less
concerned with absolute stability, trust more cloud
services, and are more comfortable with frequent
changes.

Bart: Imposter syndrome can be pretty stressful,
especially in higher roles. The pressure to be the expert
increases as you climb the ladder. Would you agree?

Mat: [recall starting at a startup as the senior
infrastructure expert. In my first week, I realized I wasn't

just a senior member; I was the most senior. That was a
moment of panic because I had always been in junior or
mid-level positions with senior colleagues to rely on.
Suddenly, I was the one everyone turned to, which was a
significant psychological challenge.

Working in this field, especially among skilled and
passionate colleagues, can be awe-inspiring. Stepping
into the role of the most senior person can be
intimidating and challenging. The responsibility of being
the point person for critical issues is impactful.

There has been a positive cultural shift. It's now more
acceptable to embrace uncertainty, particularly in
DevOps and infrastructure roles. Despite this progress,
the anxiety associated with leadership remains.

Leading a tech team, especially during crises, is an
overwhelming experience with a steep learning curve.
While one may grow and improve, the stress associated
with such roles always remains.

Bart: What are you working on currently? Are there any
surprises on the horizon?

Matt: I'm deeply involved in several projects to simplify
Kubernetes for everyone. Because of its complexity,
Kubernetes can be intimidating, so I'm working on
defining a minimal viable Kubernetes setup for a small
team. This setup would include only the bare essentials:
a load balancer, virtual machines, and

containers—nothing more.

My team and I are developing a Command Line
Interface (CLI) tool to streamline the initial Kubernetes
setup. This project was inspired by startups that needed
the flexibility to switch between cloud platforms like
Amazon ECS without being tied to any single one.

We're testing an open-source CLI that simplifies the
Kubernetes setup process across different cloud
providers. This tool handles the essential components
needed to run applications, such as installing a load
balancer, assigning an IP address, managing SSL
certificates, and orchestrating containers. I'm focused on
refining this tool to make it robust and user-friendly for
widespread adoption.

Ultimately, I want to demystify Kubernetes and make it
more accessible, especially for smaller teams or startups
that need a more straightforward solution.

Bart: Many people are interested in simplifying
Kubernetes, and your work could be a game-changer for
smaller organizations with limited resources. We're
excited to see how it develops. How can people contact
you for more information or to follow your work?

Matt: Anyone interested can check out my website or
connect with me on Mastodon, where my username is
MattDevDoug. I'm active on that platform, and while not
every post may be groundbreaking, I'm always happy to

https://mattduggan.com/
https://c.im/@matdevdug

engage with people and discuss my work and related
topics.

Chapter 5

Lessons In
Multi-Tenancy

Surviving Multi-Tenancy in Kubernetes:
Lessons Learned, Artem Lajko

Artem Lajko, an innovative engineer at the Hamburg
Port Authority, turned the complexities of multi-tenancy
in Kubernetes into an opportunity. His deep Kubernetes
knowledge and hands-on expertise made multi-tenant
cluster sharing seamless and efficient.

In this insightful podcast, Bart Farrell explores how
Artem's approach revolutionized developer experience
and platform performance. What key strategies made this
transformation possible? How does he ensure efficiency
and reliability in a multi-tenant setup?

You can watch (or listen to) this interview here.

Bart: If you have a brand-new Kubernetes cluster, which
three tools would you install first?

Artem: First, I would install cert-manager because it
automates TLS certificate management, which is
essential for secure communication, especially when
building MTLS certificates. Next, I would deploy Argo
CD for its declarative GitOps approach, as it's crucial for
platform engineers developing the platform and
customer software. The third tool would be Kyverno, as
it manages and enforces policies across the cluster
without needing complex admission control webhooks.

https://kube.fm/multitenancy-artem
https://cert-manager.io/
https://argo-cd.readthedocs.io/
https://argo-cd.readthedocs.io/
https://kyverno.io/

Bart: Have you tried Flux for GitOps or OPA (Open
Policy Agent) for policy management?

Artem: Yes, I have experience with both Flux and Argo
CD for GitOps. I initially started with Flux but found
Argo CD a better fit for my workflows.

I've used Open Policy Agent (OPA) extensively for
policy management. OPA is powerful and can handle
policies for Kubernetes, virtual machines, and other
environments. You write policies in a language called
Rego, which offers flexibility like custom functions and
modules. However, using OPA with Kubernetes could be
cumbersome due to the reliance on webhooks.

While OPA continues to evolve, I've recently switched to
Kyverno for policy management in Kubernetes. Kyverno
is more approachable for developers as it works directly
with Kubernetes manifests. This acquaintance simplifies
defining and enforcing policies within the Kubernetes
ecosystem.

I'm a platform engineer with several years of experience
building and maintaining Kubernetes infrastructure. I'm
passionate about automation, security, and developer
experience. My goal is to create robust, secure, and easy-
to-use platforms that enable developers to focus on
building great applications.

Bart: Can you tell us more about yourself and your
work?

Artem: My name is Artem Lajko, and I'm from

https://fluxcd.io/
https://www.openpolicyagent.org/
https://www.openpolicyagent.org/
https://www.openpolicyagent.org/docs/latest/policy-language/

Dortmund, Germany. Dortmund is known for its football
team, Borussia Dortmund, and companies like Adesso. It
also has the renowned TU Dortmund University, where I
earned my master's degree in computer science, focusing
on software development, infrastructure, and hardware
engineering.

My journey into cloud computing started in 2016 during
my undergraduate studies. While working on a
computationally intensive deep learning project, we
encountered difficulties effectively assigning GPU
resources to specific processes. Initially, we attempted to
use ChangeRoute as a temporary solution to isolate
processes, but it proved cumbersome. However, we soon
discovered Docker, a containerization platform that
transformed our workflow. With Docker, we could easily
package applications and their dependencies into
portable containers, streamlining GPU resource
allocation and enhancing scalability.

I soon discovered Docker's limitations, particularly with
port management and the lack of horizontal scaling
capabilities. I explored Docker Swarm as a potential
solution but found that it didn't fully meet our needs,
which led me to Kubernetes. I learned the fundamentals
of Kubernetes through Kelsey Hightower's 'Kubernetes
the Hard Way' tutorial.

Over time, I gained hands-on experience working with
OpenShift 3.11 and OpenShift 4. By 2019 or 2020, I had

https://en.wikipedia.org/wiki/Borussia_Dortmund
https://www.adesso.com/
https://www.tu-dortmund.de/
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://docs.openshift.com/container-platform/3.11/welcome/index.html
https://docs.openshift.com/container-platform/4.14/welcome/index.html

transitioned into the public cloud. I managed Kubernetes
clusters, focusing on building internal developer
platforms—tools that streamline development workflows
and improve productivity for development teams.

I have always championed a hands-on approach to
learning and implementing new technologies. While this
approach is valuable, it has led to numerous failures,
even in production environments. Initially, some
customers doubted my methods and questioned my
experience with these emerging technologies. However,
over time, they became pioneers in their own right and
embraced the innovative solutions we developed
together.

In those early days, proper documentation, formal
courses, or extensive market experience were often
unavailable. I viewed these failures not as setbacks but
as invaluable learning opportunities. There was no other
option but to experiment, learn from our mistakes, and
adapt our approach.

In addition to hands-on experience, learning platforms
like Udemy, KodeKloud, books, and blogs helped me
expand my understanding and troubleshoot specific
deployment issues, such as improper resource allocation,
security misconfigurations, and scalability challenges.
While I hold certifications like CKA, CKAD, and Azure
Solution Architect Expert, I view them as snapshots of
my skills at a particular moment. I am not an "expert"

https://www.udemy.com/
https://kodekloud.com/

but a lifelong learner. These certifications motivate me to
challenge myself and think outside the box continuously.
Bart: Given your extensive experience, if you could
return to 2017 or 2018, what advice would you give your
younger self?

Artem: I would start using managed cloud services like
Azure Key Vault earlier to focus more on productive
work rather than maintaining services.

Initially, I worked with on-premise data centers,
deploying everything self-hosted. Shifting to managed
services sooner would have been more efficient.

Bart: You recently wrote an article named Surviving
2400 Hours of Multi-Tenancy: What I Know Now. Can
you explain what multi-tenancy is in Kubernetes and
why it's necessary?

Artem: Multi-tenancy in Kubernetes refers to running
applications for multiple tenants, such as different teams,
departments, clients, or customers, within the same
Kubernetes cluster. However, this definition was more
relevant two or three years ago.

Today, multi-tenancy has evolved into an approach that
often involves providing dedicated clusters through
managed clusters. The control plane runs on the
managed cluster as a tenant, using platforms like Kamaji
or Kubernetes Platform (KKP), where you can bring
your node pool.

Multi-tenancy is now essential for teams with limited

https://azure.microsoft.com/en-us/products/key-vault
https://blog.devops.dev/surviving-2400-hours-of-multi-tenancy-what-i-know-now-9c48694aa75d
https://blog.devops.dev/surviving-2400-hours-of-multi-tenancy-what-i-know-now-9c48694aa75d
https://github.com/clastix/kamaji
https://github.com/kubermatic/kubermatic

resources or sustainability goals. It can also be an
effective solution for companies like ours that must
provide new team members with a quick start.

We operate on a ticket-based system, which can be
cumbersome and slow. Sometimes, it takes one to two
weeks to get a new Kubernetes cluster on our on-premise
infrastructure. Using this multi-tenancy approach, we
can offer new employees the same experience as they
would have on a dedicated cluster, allowing them to start
working early and experiment freely:.

Bart: What tools did you use to share your cluster with
several tenants while working with the Hamburg Port
Authority?

Artem: We use Argo CD HA (the high-availability
version) to manage the platform's configuration and
critical services like external DNS and cert-manager. We
have a hybrid infrastructure setup, with one part running
on-premise using various Kubernetes distributions and
the other in the cloud, Azure Kubernetes Service (AKS).
Argo CD allows us to create and organize Kubernetes
service catalogs across these environments.

External DNS functions differently in the cloud,
enabling us to deploy our configurations and services to
various endpoints like Azure. We use Argo CD core
instances for every team, allowing them to deploy their
applications. This method is effective for both shared
and dedicated clusters.

We leverage external DNS, cert-manager, and an ingress
controller to enhance our infrastructure and guarantee
web services are accessible outside the cluster For Role-

https://argo-cd.readthedocs.io/
https://learn.microsoft.com/en-us/azure/aks/
https://github.com/kubernetes-sigs/external-dns

Bart: Can you describe the architecture of your shared
cluster in more detail?

Artem: Our shared cluster runs on vSphere with Tanzu,
enabling us to utilize node pools similar to other
Kubernetes distributions. We deploy node pools with
specific labels and then vCluster onto these designated
nodes using a node selector.

We maintain a default node pool for essential platform
tools such as the ingress controller, cert-manager, and
external DNS. This method ensures that these core
components are always available and running smoothly.
To cater to individual developers' or customers' needs,
we create dedicated node pools where each developer
has an isolated environment. This approach differs from
our project-specific dedicated clusters.

Each team has an Argo CD core instance, a URL, and
access credentials to kickstart their work. We strive to
make the Kubernetes cluster experience similar to a
managed cloud service. Developers have access to the
resources they need without the burden of managing the
underlying infrastructure.

We've streamlined the stack on our shared cluster by
removing parts like monitoring because maintaining
multi-tenancy at scale requires a dedicated team. This
simplified setup enables faster onboarding and is an
excellent learning platform for developers, especially

https://docs.vmware.com/en/VMware-vSphere/7.0/vmware-vsphere-with-tanzu/GUID-70CAF0BB-1722-4526-9CE7-D5C92C15D7D0.html
https://www.vcluster.com/event/workshop-series-2/

those new to Kubernetes. Strict tenant isolation is a low
priority in this environment, as it's primarily used for
learning and non-critical workloads like documentation.
Bart: How long did it take to create this multi-tenant
setup from start to finish?

Artem: It took us approximately four to five weeks to
develop the initial production-ready setups for our
learning platform. This platform was designed for non-
critical workloads and was our first foray into multi-
tenancy.

Our initial implementation of multi-tenancy utilized
Argo CD natively in our Q3 cluster. However, we
encountered some challenges, particularly with project
separation. We were constrained to deploying
applications within the Argo namespace, and although
Argo was working on enabling deployments in other
namespaces, that functionality was only available later.
The primary issue we faced was that deployed
applications could inadvertently modify project settings
to default or other configurations, causing unintended
consequences. While using Argo CD to deploy
applications proved successful in our dedicated clusters
(where teams could utilize a Git repository to create
applications), it wasn't ideal for shared clusters.

To address these challenges, we transitioned to Capsule,
a tool from Clastix similar to Kamaji. Capsule
seamlessly integrated with Flux but wasn't compatible

https://github.com/projectcapsule/capsule

with Argo CD. We also experimented with vCluster as
another potential solution.

Bart: Could you share any tips based on your experience
for understanding the process and the rollout of a multi-
tenant cluster?

Artem: When building a multi-tenant Kubernetes
cluster, it's crucial to approach every aspect with multi-
tenancy in mind, considering how each tool and
component will be used and secured across different
tenants. For instance, if you're implementing monitoring
with Grafana or the kube-prometheus stack, you need to
determine how to isolate metrics and access based on
tenant groups, such as Active Directory (AD) groups for
on-premise environments and Azure Active Directory
(AAD) groups for cloud environments.

This meticulous approach is essential for every tool in
your stack, especially when strong isolation is a priority.
Adding too many tools without careful consideration can
lead to increased resource consumption and maintenance
overhead. It balances the desired isolation level and the
practical constraints of your team's size and skill set.
Building a thriving multi-tenant cluster is not just about
technical implementation; it's about aligning your
strategy with your team's capabilities and resources. In
some cases, achieving robust isolation might be best
served using dedicated clusters for each tenant.
However, this can be resource-intensive. Combining

https://github.com/grafana/grafana
https://github.com/prometheus-community/helm-charts/tree/main/charts/kube-prometheus-stack

multiple approaches, like namespaces and network
policies, can be more efficient but often requires more
engineering effort. The optimal solution depends on your
specific requirements, team resources, and the trade-offs
you're willing to make.

Bart: Considering the significant effort invested in
planning, implementing, and coordinating with various
stakeholders, was adopting a multi-tenancy approach
ultimately beneficial?

Artem: Experimenting with new approaches is
rewarding, making the multi-tenancy endeavor a
valuable learning experience. However, applying this
approach to workloads requiring strict isolation, as
opposed to a softer multi-tenancy model, demands
significantly more effort.

While we achieved a minor reduction of 200-300
gigabytes in storage usage, this is a relatively
insignificant saving for most organizations. Furthermore,
maintaining two separate approaches and incorporating
new tools like vCluster led to increased engineering
overhead, introducing additional complexities and
potential security vulnerabilities.

Developers benefited from the seamless experience of
using the shared cluster, as it felt indistinguishable from
a dedicated cluster. However, maintaining dedicated and
shared clusters with different approaches became
overwhelming for our small team. The workload of

managing over 20 projects, 300 virtual machines, and
20+ clusters with just two people proved unsustainable
in the long run.

Bart: As a two-person team, how did you keep up with
their requests to improve the platform after delivering it?
Artem: The developers appreciated the multi-tenant
setup because it provided a consistent experience across
dedicated and shared clusters. The only noticeable
difference was the login process, which required an
additional step to access the virtual cluster, although this
wasn't strictly mandatory.

We streamlined the request management process by
providing templates that developers could easily fork.
They would then submit a pull request, which we would
approve, and Argo CD would automatically handle the
deployment based on our Kubernetes manifests.

For example, if a team needed a new virtual cluster for a
project, they would create a ticket, provide an AD group
for us to map, and then submit a pull request. Argo CD
would care for the rest, seamlessly provisioning and
configuring the new cluster.

Developers were responsible for deploying specific tools
like RabbitMQ, as we didn't provide these services
directly. However, requesting and obtaining a new
cluster was straightforward: fork the template, create a
pull request, and approve it. Thanks to GitOps and our
declarative approach, Argo CD handled the heavy lifting,

ensuring everything remained in sync.

Bart: Would it have been easier to have separate clusters
instead of a shared single cluster?

Artem: Maintaining two distinct setups for dedicated
and shared clusters was unsustainable for our small
team. Focusing on a single, dedicated cluster approach
simplifies management and reduces overhead.

Bart: What's the future direction for this setup? Are
there any plans to evolve the multi-tenant cluster?
Artem: Based on the advice of our enterprise architect,
we've decided to abandon the multi-tenant model and
exclusively use dedicated clusters. While this might lead
to some underutilized resources, it significantly
improves stability and simplifies our management
processes in the long term.

Bart: As a team of two, how do you keep up with the
constant learning required for your roles?

Artem: Blogs are my primary resource for staying
current with market trends and new developments. They
offer a quick and accessible way to gain insights into
other companies' activities. Conferences like KubeCon
also provide valuable opportunities for networking and
knowledge exchange with industry peers. Learning from
the successes and failures of others helps us avoid
common pitfalls.

Bart: How do you structure your learning time? Do you
have a specific schedule for reading blogs or watching

educational content?

Artem: It's pretty simple for me. My company
generously allocates time for learning and certification
during work hours. If there are no urgent tasks, I can
dedicate a week and a half to focus on certifications. My
typical workday starts at 7 am and ends around 3 or 4
pm. After a short break, exercise, and a power nap, I
spend an hour or two in the evening, from 7 pm to 9 pm,
learning new things. I treat this like a daily workout for
my brain. While it impacts my time, staying ahead in this
field is essential.

Bart: You mentioned sports earlier. What kind of sports
do you do?

Artem: I focus on general fitness and exercises like
Freeletics to stay healthy and active. Nothing is too
extreme, just enough to maintain a good fitness level.
Bart: What's next for you? Can we look forward to more
insights and knowledge sharing from your work at the
Hamburg Port Authority?

Artem: I'm collaborating with a colleague on a book
about GitOps deployments for Kubernetes. It combines
our perspectives as developers and platform engineers.
We received numerous requests for detailed insights,
which prompted us to write this book. It's my next big
project.

I also plan to attend KubeCon in Paris next year to
continue learning and networking. Additionally, we're

exploring managed Kubernetes solutions, looking into
providers like Giant Swarm, which offers Kubernetes
clusters to companies without platform engineers. This
exploration involves understanding how Cluster API
providers like Kamaji, KKP, and Giant Swarm operate.
Bart: When can we expect the book to be released?
Artem: We're aiming for mid-next year, around May or
June.

Bart: What's the best way for people to contact you?
Artem: Feel free to send me a direct message on
LinkedlIn; that's the quickest and easiest way to reach
me.

https://www.giantswarm.io/management-cluster
https://cluster-api.sigs.k8s.io/

Chapter 6

Hacking
Alibaba

Hacking Alibaba Cloud's Kubernetes

Cluster, Hillai Ben-Sasson & Ronen
Shustin

Securing Kubernetes clusters is one of the toughest
challenges in cloud security, but for Ronen Shustin and
Hillai Ben-Sasson at Wiz, it's just another day at work.
These top-tier researchers are fearless in diving into the
deep end. Their latest exploit? Cracking Alibaba Cloud's
Kubernetes clusters through clever PostgreSQL
vulnerabilities.

Join Bart Farell as he dives into how their innovative
approach identifies vulnerabilities and enhances the
overall security of cloud ecosystems.

You can watch (or listen to) this interview here.

Bart: What are three emerging Kubernetes or other tools
that you're keeping an eye on?

Hillai: Ronen and I have extensive knowledge of
Kubernetes, but our expertise only originates from
working directly with Kubernetes. We're hackers who
transitioned into Kubernetes hacking, not Kubernetes
experts who started hacking. So, we need to familiarize
ourselves with many Kubernetes tools. Most of the tools
we know are those we've encountered and exploited
during our engagements. Therefore, we might not be the

https://kube.fm/hacking-alibaba-ronen-hillai

best sources for the latest Kubernetes tools, but we are
excited about ongoing Kubernetes research.

Bart: Are there any specific tools or infrastructure that
you particularly like?

Ronen: Instead of specific tools, we're more interested in
infrastructure elements like service meshes. From an
attacker's perspective, engaging with these is quite
fascinating. Currently, we need to mention standout
tools.

Bart: For those unfamiliar, can you tell us more about
your roles and what you do at Wiz?

Hillai: Ronen and I work at Wiz, a cloud security
company, as part of the vulnerability research team. We
focus on researching primary cloud services and
providers like Azure, GCP, AWS, and more. We utilize
their open bug_bounty programs to find and report
vulnerabilities. By sharing our findings, we aim to
enhance the security of the cloud community, not just for
our clients but for everyone.

Bart: Is hacking cloud environments your primary focus,
or is this a specialized area within security research?

Hillai: It's unique. We didn't start with cloud
environments. We began as general security researchers,
focusing on hacking techniques. Over time, we
transitioned into specializing in cloud security. Our
research aims to discover innovative ways attackers

https://www.wiz.io/
https://en.wikipedia.org/wiki/Bug_bounty_program

might exploit cloud systems, ultimately leading to more
secure cloud environments for everyone.

Bart: How has your hacking experience influenced your
approach to Kubernetes security? Did you discover any
exciting findings during this research?

Hillai: Many cloud providers rely on Kubernetes and
container technology to manage their services efficiently.
Traditionally, setting up individual virtual or physical
machines for each customer would only be scalable for
some companies. Containers offer a more efficient way
to manage large infrastructures. Focusing on cloud
environments, we discovered Kubernetes as the go-to
tool for Alibaba Cloud and companies like IBM. Our
journey started with cloud security research and
ultimately led us to specialize in Kubernetes security
within that domain.

Ronen: Our initial focus was on container security. We
researched container escapes and other vulnerabilities
that might impact containers. This research naturally led
us to Kubernetes, as many infrastructures we
encountered used it. We had to learn Kubernetes and
develop specific techniques to achieve our goals.

Bart: If you could go back in time and share one career
tip with your younger self, what would it be?

Hillai: Always follow your curiosity. Research is all
about pursuing leads and hunches. We were curious

https://www.alibabacloud.com/

about cloud security, even though we didn't start in that
field. It became popular, and we wanted to explore this
new area.

Bart: What resources do you use to stay updated on
Kubernetes?

Ronen: I rely on technical documents the most. I also
follow blogs from cloud providers, mainly the CNCF
blog, because they have valuable information. I use The
Kubernetes community on Twitter to learn about new
features and technologies; they are highly active there.

Hillai: Additionally, I recommend Reddit. Many
communities focused on security, Kubernetes, and cloud
computing offer great content.

Bart: We came across an article about how you hacked
Alibaba Cloud's Kubernetes cluster and a talk you gave
at KubeCon. What motivated you to do this research,
and did your company support you?

Hillai: Our company supports security research. At Wiz,
we focus on cloud security research, often utilizing
offensive security methodologies. We act like attackers
to find wvulnerabilities and then report them to the
vendors. By identifying vulnerabilities, we can report
them to the cloud providers and prevent actual attacks.
Alibaba Cloud is just one example of this engagement.

Ronen: Our research often leads us to discover new
hacking techniques we need to learn about. We share

https://www.cncf.io/blog/
https://www.cncf.io/blog/
https://www.youtube.com/watch?v=d81qnGKv4EE
https://www.youtube.com/watch?v=d81qnGKv4EE
https://en.wikipedia.org/wiki/Offensive_Security

these discoveries with everyone so they can protect
themselves.

Bart: One of our previous guests talked about
Kubernetes secrets management and threat modelling.
How do you approach exploiting vulnerabilities from a
hacker's perspective?

Ronen: Our best security insights come from working
with different applications, frameworks, and cloud
systems. When we engage with one, our primary goal is
to find critical security mistakes in its setup. To do this,
we must fully understand how the system works and
where attackers might discover weaknesses.

Hillai: There's an interesting difference between
traditional and cloud security research. In traditional
research, the goal is often to achieve "Remote Code
Execution" (RCE) on a specific application, which
means taking control of a machine and running
unauthorized code. However, in the cloud, things are
different. Since you often have access to a virtual
machine yourself, RCE becomes less attractive.

The real challenge in cloud security lies in breaching the
barriers between different customers. Unlike traditional
environments, the cloud is a shared space with hundreds
of thousands of users. Our focus is to demonstrate the
possibility of attackers moving between these customers,
even without data access. This risk highlights a unique

https://owasp.org/www-community/Threat_Modeling
https://en.wikipedia.org/wiki/Remote_code_execution

cloud security risk the potential for attackers to "jump"
from one user to another and compromise their
information. This type of research, proving a breach of
trust without actually stealing data, is a crucial aspect of
cloud security and something rarely seen in traditional
security research.

Bart: When starting this research, why did you choose
Alibaba Cloud?

Ronen: Our initial study focused on PostgreSQL. Since
many cloud providers offer managed PostgreSQL
instances, we were interested in how they handle the
infrastructure. We discovered vulnerabilities that allowed
us to execute code on these instances. We tested several
providers, including Alibaba, and presented our findings
at the Black Hat talk.

Hillai: We began with PostgreSQL and expanded to
Alibaba and other cloud providers. Our blog_post
provides more details about PostgreSQL and our Black

Hat talk.

Bart: Why did you choose to focus on PostgreSQL for
your research?

Ronen: PostgreSQL is a robust database with many
features, including the ability to execute code within the
database. While this capability can benefit certain users,
it poses a potential security risk in cloud environments.

Cloud providers typically modify PostgreSQL to prevent

https://www.postgresql.org/
https://www.blackhat.com/us-23/briefings/schedule#bingbang-hacking-bingcom-and-much-more-with-azure-active-directory-33206
https://www.wiz.io/blog/the-cloud-has-an-isolation-problem-postgresql-vulnerabilities

users from executing code on their managed instances.
However, our research identified vulnerabilities in these
modifications, not in the core PostgreSQL code itself.
We were able to exploit these vulnerabilities to bypass
the restrictions and still execute code on the managed
databases.

Bart: How does PostgreSQL relate to Kubernetes in this
context? Did you find a way to access a Kubernetes
cluster by exploiting the PostgreSQL vulnerabilities?

Hillai: Cloud providers often use containers and
orchestration tools like Kubernetes to manage large-scale
services, including PostgreSQL. This approach allows
them to offer these services to many customers
efficiently,. = While exploiting the PostgreSQL
vulnerabilities, we discovered that we were actually in a
Kubernetes environment. The user interface typically
abstracts away the underlying infrastructure from the
user, but our research methods disclosed it.

Ronen: We've seen various infrastructures, but Alibaba
and IBM used Kubernetes for their managed services.
Other providers might use different implementations.

Bart: Security experts often talk about avoiding
vulnerabilities caused by misconfigurations, which can
be human errors. What were the biggest
misconfigurations you found that created security risks?

Hillai: The biggest misconfiguration we found is treating

containers as the only security barrier. It's important to
remember that containers can be a security layer within a
more extensive security system, but they should be relied
on only partially. Containers alone wouldn't be strong
enough to isolate each company's data from each other
entirely because any security flaw in the core Linux
system (the kernel) could bypass container security. We
were able to exploit such misconfigurations during our
research.

Another problem is poorly managed secrets within the
Kubernetes environment. These secrets could read
information across the system and write and change it,
which meant we could overwrite software packages used
by many cloud services and customer accounts within
Alibaba. Essentially, these powerful secrets allowed
someone to access different environments, services, and
customer data—all with a single key. That's a significant
security risk we wouldn't recommend taking.

Ronen: The specific secret we found was the image pull
secret. In Kubernetes, when you want to download
images from a private registry, you need this secret to
configure network access. If you misconfigure it, you
might accidentally include a secret key with push
permissions instead of pull permissions. This key should
only allow downloading images, not uploading them. If
an attacker gains access to a key with push permissions
(like what we achieved in Alibaba), it could have

https://kubernetes.io/docs/concepts/containers/images#specifying-imagepullsecrets-on-a-pod
https://kubernetes.io/docs/concepts/containers/images#specifying-imagepullsecrets-on-a-pod

devastating consequences for your entire environment.

Bart: To those without a strong background in security,
it may seem that security experts click a button, scan
your system, and find vulnerabilities. However, security
research, like many other fields, is a blend of art and
science. Can you elaborate on this further?

Hillai: Security research requires a lot of creativity.
When you hear about a new attack vector, it boils down
to creative thinking coming up with something no one
else has considered. In this research, we started by
looking for patterns we already knew were risky, like
overly permissive settings and shared volumes. We had
to think outside the box. Returning to the Alibaba Cloud
control panel, we began experimenting. This exploration
led us to a breakthrough when we discovered a button
enabling SSL encryption for the PostgreSQL instance.
Clicking it triggered new activity in the container, which
we followed to escape the container.

Bart: To help our audience understand, could you
explain SCP, its role in the attack, and how you exploited
it?

Hillai: SCP stands for Secure Copy. It's a standard tool
on Linux systems that transfers files between machines
using secure SSH connections. In our case, the SSL
encryption feature we triggered used a new Alibaba
management container. This container ran the SCP

https://en.wikipedia.org/wiki/Secure_copy_protocol

command on our container to move the SSL certificate.

SCP reads its configuration from a directory we control
within our container by default. We placed a malicious
SSH configuration file there. When the SCP command
loaded this configuration, it ran a command we placed
within the file. This trick let us escape our limited
container and jump to the Alibaba Management
Container because it unknowingly executed our
command.

Ronen: A crucial factor in this exploit was the shared
volume. This volume acted like a shared home directory
for our container and the management container since
the same user existed in both containers. We could
exploit this shared space because SCP reads its
configuration from the user's home directory by default.
By replacing the default configuration with ours
containing a malicious command, we tricked the
management container into running it when it used SCP.

Bart: What does successfully creating a privileged
container using the Docker API tell us about cloud
security in general?

Ronen: Many cloud environments rely on Docker to
manage their containers. You can create a new container
through an HTTP request if you gain access to the
Docker API socket. This container could be privileged,
meaning it shares resources like namespaces and

https://kubernetes.io/docs/concepts/policy/pod-security-policy#privileged
https://kubernetes.io/docs/concepts/policy/pod-security-policy#privileged
https://docs.docker.com/engine/api

possibly even volumes with the wunderlying host
machine, the Kubernetes node. Spawning a privileged
container grants you access to almost everything the
node has access to.

Hillai: You transition from being a guest in the container
to gaining complete control of the host machine.

Bart: Gainin access to the node would only give you
control of some of the Kubernetes clusters, would it?

Ronen: With code execution on the node, we could use
Kubelet credentials to explore further, looking for
commands, codes, secrets, and other information. In our
case, Alibaba had misconfigured its Kubelet credentials:
it was too powerful. We could list all pods, see all the
code in the cluster, potentially containing customer data,
and even retrieve all the secrets using the "kubectl get
secret" command. This misconfiguration was the key
that unlocked broader access for us.

Bart: Did you achieve the entire exploit on a single node
within the cluster?

Ronen: Yes, we were on a single node. Using the
compromised Kubelet credentials, we could see all the
other nodes and resources in the cluster.

Hillai: While the specific node we compromised was
isolated and didn't contain data from other customers, the
service account associated with Kubelet had excessive
permissions. Even though the node itself was secure, this

https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet

service account allowed us to access sensitive
information across the entire cluster, including pods,
nodes, and secrets belonging to other customers.

Bart: What was the next step after taking over Alibaba's
managed PostgreSQL offering? Did you contact Alibaba
to report your findings?

Hillai: Once we discovered the ability to access data
belonging to other customers, our research stopped
immediately. We wouldn't risk even accidentally
accessing someone else's data. At that point, we
documented everything we found and sent a detailed
report to Alibaba Cloud, and they responded quickly and
professionally. They kept us updated on the fixes they
deployed throughout the research process. We
immediately report any critical issues to prevent others
from exploiting them.

Bart: Can you tell us about any specific fixes they
implemented based on your findings?

Ronen: The first issue was a misconfiguration that
falsely indicated increased resource consumption. We
exploited it to execute unauthorized code on the
operating system. We collaborated with Alibaba Cloud to
fix this problem. They also resolved the SCP
vulnerability problem that allowed unauthorized access
to their management container. Finally, they restricted
the Kubelet permissions to a narrower scope, granting

only specific permissions.

Hillai: Following our research, Alibaba took several
steps to address the vulnerabilities we discovered. They
limited image pull secret permissions to read-only
access, preventing unauthorized uploads. Additionally,
they implemented a secure container technology similar
to Google's gVisor project. This technology hardens
containers and makes them more difficult to escape
from, adding another layer of security.

Bart: Throughout this process, what key lessons did you
learn?

Hillai: There are two main lessons learned. First,
containers shouldn't be relied on as the sole security
barrier. While they can be a layer of security, they can be
bypassed in various ways. Additional precautions are
crucial to ensure proper isolation between customers. We
recommend building a layered defense so that a single
vulnerability doesn't allow unauthorized access to a
competitor company's data.

Second, strong credentials require careful management.
As Ronen mentioned, Alibaba originally had a powerful
secret that could be read and written across the cluster.
This secret also had push access to the central Docker
image registry. Following our report, they limited the
scope of these credentials. It's essential to be very
cautious with such powerful secrets. Ideally, you should

https://gvisor.dev/

scope the secrets to specific actions and minimize them
whenever possible. A powerful secret can allow attackers
to move across different environments, including
production, development, testing, and even development
workstations.

Another lesson learned relates to the container itself. The
SCP vulnerability we exploited highlights the risk of
shared namespaces between containers. In the Alibaba
incident, the shared namespace and home directory
allowed us to exploit the SCP vulnerability. Always be
very careful when sharing namespaces between trusted
and untrusted containers. The lesson learned is to
minimize what you share and never grant unnecessary
permissions. Attackers may exploit even seemingly
minor misconfigurations.

Bart: Can you recommend any specific tools that people
might need to be aware of if they want to discuss
implementing some of these mitigation tactics with their
managers?

Hillai: There's one framework I highly recommend:
Peach. It's an open-source project developed by our
research team and contributions from fantastic people at
many companies.

Peach is a framework that outlines how to build secure
and isolated environments, whether in the cloud or not.
Like a white paper, it's a valuable resource that guides

http://peach/

you on properly isolating tenants or customers in a
multi-tenant environment. It covers common mistakes to
avoid, what to look out for, and how to implement the
necessary precautions.

If you manage a multi-tenant environment or need to
isolate resources within your environment, Peach is a
valuable resource worth exploring. It covers the common
mistakes to avoid and offers best practices for
implementing protection. It's completely open-source
and available on GitHub. We also welcome contributions
from anyone with additional tips or tricks we might need
to know.

Ronen: I also recommend using secret scanning tools.
These tools are essential in our research; we use them to
identify potential secrets-related vulnerabilities.

Bart: Do you have any recommendations for securing
multi-tenant Kubernetes clusters?

Ronen: Securing multi-tenant Kubernetes clusters
involves a few key areas. First, prioritize network
security. By default, Kubernetes doesn't restrict node
communication, so strong network isolation is essential.
Second, separating namespaces between customers is a
good practice when dealing with multi-tenancy.

Additionally, consider implementing container security
technologies like gVisor or Kata Containers. Don't solely
rely on Docker's security features to prevent container

https://github.com/wiz-sec/peach
https://katacontainers.io/

escapes.

Bart: What advice would you give for hardening
containers to make them more secure?

Ronen: Our case study with Alibaba revealed they were
using shared Linux namespaces between containers,
such as their management container and our container.
Sharing Linux namespaces can be dangerous. When
designing a system that shares namespaces or resources
between management and regular user containers,
constantly carefully assess and be aware of the risks
involved. Container technologies like GVisor and Kata
Containers can mitigate the risk of attackers exploiting
Linux kernel vulnerabilities in your environment to
achieve kernel-level code execution and jump to the
Kubernetes node.

Bart: What advice would you give to Kubernetes
engineers needing more security experience?

Hillai: Security is crucial. Companies of all sizes, from
startups to large corporations, are constantly targeted by
malicious actors, not just ethical hackers like us. Anyone
managing a service on the internet must understand that
they are a potential target for cyberattacks. These attacks
range from data breaches to ransomware attacks that turn
off your entire operation. Even small projects need to
pay more attention to security.

The good news is that many tools can help you achieve

https://katacontainers.io/
https://katacontainers.io/

security without being a security expert. Tools like
gVisor are relatively easy to implement because you
don't need to write them from scratch. By using security
hardening tools, you gain significant protection benefits.

Ronen: Besides the tools, many online resources are
available to learn about security. These resources can
help you understand security risks and how to mitigate
them. Kubernetes itself has built-in security features,
including default security policies. Be security-conscious
and take steps to secure your environment.

Bart: You discover a vulnerability and report it to the
vendor. What prevents you from exploiting the
vulnerability for malicious purposes instead? Wouldn't
Alibaba eventually find the problem on its own?

Ronen: We started seeing signs that Alibaba was taking
steps to address the issue while we were still in the
research phase. They were transparent with us about
their efforts. Cloud providers all have security teams that
constantly monitor their environments. They likely knew
we were there.

Hillai: Cloud providers are doing a great job with
security. We're ethical hackers; our goal is to improve
security for the cloud community. Penetration testing, or
offensive research, is a tool to achieve that goal. We
want to fix the vulnerabilities, and it's rewarding to hear
that our reports lead to security updates that benefit

many customers. We do this to make cloud products
more secure and help users learn how to secure their
deployments.

We publish blogs and give talks so that security
professionals and developers can learn from our research
and identify potential problems in their environments.

Bart: What's next on the agenda for you both?

Hillai: We're always working on new research projects.
Sagi from our team recently published a blog about a
vulnerability in Hugging Face, an Al provider. We have
several ongoing projects under disclosure, meaning we
can only reveal them once we fix the vulnerabilities.
Follow our blog; it's the first place we announce new
findings.

Ronen: Our research will benefit the Kubernetes
security community as well.

Bart: How can people contact you if they have
questions?

Hillai: We're both on Twitter. My handle is @hillai, and
Ronen's is @RonenSHH. You can also email us at
https://research@wiz.io, but Twitter is the best way.
Make sure to spell the names correctly.

https://www.wiz.io/authors/sagi
https://www.wiz.io/blog/wiz-and-hugging-face-address-risks-to-ai-infrastructure
https://x.com/hillai
https://x.com/RonenSHH
https://research@wiz.io/

Chapter 7

Scaling Jenkins
to 10,000 Builds

From 0 to 10k Builds a Week With Self-
Hosted Jenkins on Kubernetes

10,000 builds a week with self-hosted Jenkins on
Kubernetes sounds impossible, but Stéephane Goetz, a
Senior Developer at Swissquote Bank, achieved it. With
his extensive experience in web development and cloud-
native technologies, Stéphane and his team have
implemented a robust CI/CD pipeline, managing the
entire process with Kubernetes and Jenkins, ensuring
massive scale and efficiency.

Bart Farell sat down with Stéphane to discuss the
journey, the initial challenges, the transition to
Kubernetes, and how they used a unique 'sandbox’
environment and KubeVirt to overcome scaling
challenges and revolutionize their CI/CD pipeline.

You can watch (or listen to) this insightful interview
here.

Bart: If you have a new Kubernetes cluster, which three
tools would you install?

Stéphane: Firstly, I highly recommend ArgoCD. It has
been recommended many times on your podcast, and I
agree that it is an excellent tool for managing the
deployment of applications within a Kubernetes

https://kube.fm/10k-builds-jenkins-stephane
https://argoproj.github.io/argo-cd

environment.

Secondly, we switched from using the basic NGINX
ingress controller to Traefik because it better suited our
specific needs. Traefik has proven to be highly effective
at managing incoming traffic to our custom-built
Kubernetes cluster, and we are delighted with its
performance.

Finallyy, I recommend Backstage for overall
management. While it is not designed explicitly for
Kubernetes, it is an excellent platform for consolidating
and displaying information about the various tools we
use, the operations within our cluster, and the health and
performance of our system.

Bart: With observability becoming more complex, do
you find the number of tools overwhelming? Is there a
trend toward consolidation?

Stéphane: Observability always feels incomplete
because it encompasses so many different aspects. While
tools like Prometheus and Grafana effectively handle
metrics, and the ELK stack effectively aggregates logs,
challenges arise in areas like alerting and error tracking.

Tools like Sentry can help track errors logged by
applications, and more comprehensive application
performance monitoring (APM) tools provide full
application traceability. However, integrating all of these
different aspects is still a challenge. Some tools cover

https://github.com/kubernetes/ingress-nginx
https://github.com/kubernetes/ingress-nginx
https://traefik.io/
https://backstage.io/
https://prometheus.io/
https://grafana.com/
https://www.elastic.co/what-is/elk-stack
https://sentry.io/
https://en.wikipedia.org/wiki/Application_performance_management
https://en.wikipedia.org/wiki/Application_performance_management

most or some of these areas, but the ecosystem has yet to
mature fully.

Bart: Can you tell us a little about yourself and your
work?

Stéphane: I'm Stéphane Goetz. I started my career as a
web developer with PHP, HTML, and CSS. I'm still a
web developer but mainly work with React and
TypeScript and use Java. I've been working at
Swissquote Bank for many years. It's an online bank
based in Switzerland that serves several European
countries. My team and I have worked on various
projects, but lately, we've been focusing on architecture
and developing libraries that other developers across the
company can use.

Bart: With your web developer background, how did
you first get into cloud-native technology?

Stephane: Many years ago, I ran a small company where
I had to do some sysadmin work, like managing a Linux
server. At one point, we decided to set up our own
Jenkins cluster. That was our first experience with cloud-
native technology, and it introduced us to Kubernetes
and containerizing our workload. That's how we started
down that path.

Bart: What differences do you see between web and
cloud-native environments?

Stéphane: One of the things I appreciate about

https://www.swissquote.com/
https://www.jenkins.io/

deploying applications in Kubernetes is the use of
configuration files. Whether you like YAML or not, the
ability to define your environment and automate
deployments with tools like ArgoCD is a game-changer.
Scaling your applications and reliably deploying them
using templates is straightforward. Compared to how we
used to deploy applications, it's like night and day.

Rather than hands-on Kubernetes work, I focus on
understanding the platform's core concepts and benefits.
My expertise lies primarily in JavaScript developer tools,
and I rely on colleagues, particularly our SRE team, to
manage our production clusters and stay informed about
the latest Kubernetes developments. We regularly
discuss new ideas and implementations.

Bart: Let's discuss your article "From Zero to 10,000
Jenkins Builds a Week." What were the initial challenges
and motivations that flared this journey?

Stéphane: This story dates back to around 2015. When I
started at Swissquote, we weren't using Jenkins at all.
But soon, we noticed that teams were running their own
Jenkins instances on their personal machines. These
setups were often unreliable, with machines breaking
down, teams skipping updates, and builds failing due to
missing configuration files. Plus, these machines weren't
powerful enough to be used for both development and
releases. It was clear that something needed to change.

https://medium.com/swissquote-engineering/from-0-to-10000-jenkins-builds-a-week-part-4-migrating-to-a-new-environment-c67f6b80ec21
https://medium.com/swissquote-engineering/from-0-to-10000-jenkins-builds-a-week-part-4-migrating-to-a-new-environment-c67f6b80ec21

Bart: What were your next steps to fix the pain points?

That's when we officially formed our team to support the
development teams. Before that, we were a loosely
organized group. Our first big project was to facilitate
the process and create a solution to ensure builds were
always successful and automated. At first, we tried
getting a bigger, more powerful server from IT and
centralizing Jenkins on it. But this didn't work because it
didn't fix the underlying problems—missing
configurations and inconsistent build results still
happened across different projects, even though we tried
to consolidate everything.

Then, one of my colleagues introduced us to Kubernetes,
a relatively new concept. He suggested that Kubernetes
could help us solve our problems with scaling and
consistency by letting us manage applications in a
cluster. We were interested, so we looked into how other
companies started using Kubernetes in 2015, even
though it wasn't widely adopted.

We created a small MVP (Minimum Viable Product) and
set up a small Kubernetes cluster with four machines.
Each development team has its own Jenkins controller
within the cluster to manage its builds. We containerized
each build using Docker, which we already used for
development, to ensure that all builds were isolated and
consistent. Automating configuration management was a

key focus, ensuring that every build in our system had a
basic configuration applied automatically.

Bart: How did your initial MVP's architecture work?
How did a code change progress through your setup's
CI/CD pipeline?

Stéphane: At that time, we were using Mercurial instead
of GitHub. The process was similar to Git: you’d push a
single commit for a change. We had a daemon that
watched for these changes on the central server. The
daemon would then determine which repository and
commit ID were affected and send that information to a
central server.

Stephane: The central server would determine which
maintainer and team were responsible for the code
change. It would communicate with the Jenkins
controller assigned to that team, create a new job or
update an existing one if necessary, and then trigger a
build. After the build finishes, the server sends an email
to notify people of the build's success or failure.

Bart: Was the MVP successful?

Stéphane: It was very successful, mainly because of its
automation capabilities. Automating job creation was a
big breakthrough. We used metadata from our
repositories, especially Maven's POM XML files, to
assign jobs to the right teams automatically. Teams didn't
have to configure their CI processes anymore

https://www.mercurial-scm.org/
https://maven.apache.org/pom.html

manually—it was all automatic. This was very well-
received by our teams. We had about 20 teams back
then, and each team eventually had its own Jenkins
instance configured and running smoothly.

Bart: Did any challenges arise during the MVP's
development or implementation?

Stéphane: One ongoing challenge, even today, is
reliably downloading and managing assets like Docker
images, NPM packages, and Maven libraries. Caching
helps but can introduce conflicts with concurrent writes
during builds. Docker images, in particular, can be large
and slow to download. We've used caching and
automated cleanup scripts to mitigate these issues.

Another challenge was the configuration process. In
Jenkins 1, manual configuration through the user
interface was complex and error-prone when replicating
configurations across builds. The introduction of Groovy
scripting in Jenkins 2.0 allowed us to define
configurations as code, making tasks like checking out
repositories, building Maven projects, and sending email
notifications much more painless to automate and
manage.

Bart: How did you scale the MVP to handle 10,000
weekly builds after setting it up? Were there any
significant changes or challenges you faced during that
scaling process?

https://groovy-lang.org/

Stephane: Scaling to 10,000 builds a week was a
gradual process with several improvements. An early
enhancement was integrating SonarQube for code
quality. We set up dedicated SonarQube instances for
each Jenkins controller, allowing teams to configure and
define quality gates. Every build in Jenkins
automatically underwent SonarQube checks, a process
simplified by the new configuration scripting language
in Jenkins. We wrote shared functions to simplify adding
SonarQube steps to builds, making it easily accessible to
most teams. This addition was well-received and remains
a crucial part of our workflow today.

Another change was creating a new "Productivity" team
that worked alongside us. The team focused on
improving and standardizing our pipeline and developer
tools. They enhanced our standard pipeline by adding
automated reports like Allure and tailoring tools to
specific team needs. The Productivity team
enhancements enabled our CI/CD pipeline to support a
broader range of projects, including mobile app builds
and Python projects, beyond our initial focus on Java.

Around 2019, we migrated from Mercurial to GitHub
Enterprise. This complex process required ensuring
compatibility between both systems during the
transition. After completion, we phased out Mercurial
entirely and fully adopted GitHub Enterprise.

http://sonarqube/
https://docs.qameta.io/allure
https://enterprise.github.com/
https://enterprise.github.com/

As our company grew, so did the number of teams using
our CI/CD infrastructure. We started with about 30 teams
and now manage around 15 Jenkins instances. Managing
these instances became challenging as teams customized
their setups, sometimes leading to issues we had to
investigate and resolve.

Bart: How did the team address the issues arising from
teams breaking things in the Jenkins instances?

Stephane: Addressing the issues with Jenkins became a
significant undertaking for our team, primarily
composed of engineers rather than system
administrators. We initially managed updates with basic
'kubectl apply' deployments, but this method proved
unsustainable as we scaled to 20-30 Jenkins controllers.

The discovery of Helm charts led to a transition to a
Helm chart framework. Simultaneously, we implemented
partially immutable configurations for Jenkins, meaning
that essential configurations like pod startup parameters
and user authentication settings would automatically
reset upon container restart. This standardization ensured
a consistent baseline for our Jenkins instances.

To maintain team flexibility, we ensured that our
adjustments didn't override team-specific settings. This
approach fostered experimentation and encouraged
teams to contribute improvements that we could
incorporate into the standard pipelines.

https://helm.sh/

Another challenge stemmed from Jenkins' file-based
configuration system. Newly launched Docker images
would copy plugins onto the disk, sometimes causing
conflicts. To resolve these conflicts, we standardized our
Docker images always to include the latest versions of
essential plugins. This standardization ensured
consistency across deployments.

Bart: You've essentially built a Jenkins system within
your existing Jenkins setup. The only thing you still need
to include is ArgoCD.

Stéphane: We've created a self-contained Jenkins
environment that automates its processes. However, our
SRE team, which is responsible for managing all
production clusters, was already using ArgoCD for their
infrastructure. They offered to integrate it with our
initially independent cluster, and we were happy to do
so. On the first integration day, we set up ArgoCD to
manage our Helm charts, enabling it to update our
Jenkins deployments automatically after each build.

Bart: Your setup is unique in scale, with multiple teams,
including Jenkins within Jenkins and now ArgoCD.
What challenges have you faced that others might not
typically encounter?

Stéphane: Our main challenge is the comprehensive
management of resources within the cluster, which
includes personnel, network bandwidth, CPU,

input/output operations, disk space, and memory. We've
exceeded the limits of each of these resources at different
times and had to find solutions.

Initially, we underestimated the resource requirements
and assumed we would stay within the limits. However,
we quickly reached those limits. For example, Jenkins
logs grew to over a gigabyte per build, so we
implemented a strict limit of 10 megabytes per log to
conserve storage. Kubernetes handles CPU and memory
efficiently by default, but we needed more precise
control over pod lifecycles during builds. To address
this, we introduced an automated mechanism to shut
down containers after 90 minutes to guarantee efficiency.

A persistent challenge has been the setup of integration
test environments, which has required ongoing
innovation and problem-solving over time.

Bart: Did you run the integration tests against a test or
staging environment?

Stéphane: For integration testing, we used a rather
creative approach. We built a system called the sandbox
for our development environment — we like to be
inventive with names. Essentially, it's a tool that analyzes
Maven dependencies. If a dependency indicates a
sandbox, meaning a development environment in our
context, the tool adds it to a Docker Compose YAML file
and starts it up.

https://maven.apache.org/
https://docs.docker.com/compose

Each sandbox has a corresponding Docker image listed
in the Docker Compose file for easy reference. For
example, if your application needs a database, we'll start
that database. If it depends on another application, we'll
start that one, too. The system works recursively,
meaning if one application starts another, and so on, up
to 60 applications deep, it automatically handles all
dependencies.

This approach makes adding dependencies and starting
applications accessible on developer machines, provided
they have enough CPU and RAM. However, it does
come with challenges. Even though it's technically
possible, developer machines can struggle to run many
containers simultaneously. We don't recommend pushing
the limits because it strains the cluster resources.

Bart: Could you distribute this load across the cluster
using Kubernetes?

Stéphane: Kubernetes is excellent at managing
resources for containers it directly oversees. However,
our setup involved Docker Compose, which meant our
pods were utilizing Docker sockets and launching
containers outside Kubernetes' direct control. We had to
employ some clever networking tricks to connect these
environments.

The challenge was that Kubernetes wasn't aware of all
the containers running in these integration environments.

https://docs.docker.com/engine/reference/commandline/dockerd#daemon-socket-option

While Kubernetes might report everything as working,
nodes could be struggling with the load—especially
when we had 200 containers running simultaneously and
consuming a significant amount of memory.

Additionally, Kubernetes did not manage operations like
Docker builds, which use the Docker socket to start
containers. To address these issues, we improved our
Sentinel system. This new version intelligently
monitored container usage, enforced memory quotas,
and terminated containers after 90 minutes to prevent
lingering instances from consuming resources
unnecessarily, which helped stabilize our environment
and ensure smoother builds for our users.

Bart: Did you learn any other valuable lessons from this
experience?

Stéphane: We realized a significant oversight in our
cluster design. Initiallyy, we hadn't anticipated the
complexities of running Docker outside of Docker—a
technique known as Docker-in-Docker(DinD). While
technically possible, it presented unforeseen challenges.
Docker's local image caching system, designed for single
daemon use, required extensive image downloads when
starting new daemons. For example, downloading 60
images for an application with multiple sandboxes took
up to 45 minutes, highlighting network limitations and
scalability issues.

https://www.docker.com/blog/docker-can-now-run-within-docker

We attempted an alternative approach using Kubernetes
to manage short-lived namespaces and pods for Docker
operations. However, this approach introduced
significant complexity, especially in aligning with
developers' existing Docker Compose configurations for
local development. Features like local file mounts and
more significant configuration limits posed additional
hurdles we needed help to overcome. Even though using
Kubernetes for Docker operations seemed theoretically
sound and aligned well with Docker Compose, the
challenges in implementation outweighed the potential
benefits.

Bart: As we approach 2023, how large is the team
responsible for managing the CI/CD pipeline?

Stéphane: At the beginning of 2023, our team dedicated
to Jenkins infrastructure grew to four members. The
adjacent productivity team also had four members, and
the SRE team, which supports us, also had four
members. During this time, we decided to move away
from the cluster we originally built due to its limitations
and fragility. It became clear that our sister team, the
productivity team, which already managed build content,
best practices, and pipelines—including SonarQube—
was better suited to oversee the Jenkins controllers'
management.

Bart: With such a significant transfer of code and

knowledge between teams over almost a decade, how
did you manage that process?

Stéphane: It was a monumental challenge. One of the
initial hurdles was adapting our workflows to fit within
the stricter operational constraints of the SRE-managed,
production-grade cluster. For instance, running Docker
within Docker wasn't allowed due to security and
stability concerns for a finance company's infrastructure.
We had extensive discussions with the SRE team to
address these challenges. They proposed using KubeVirt
—a virtualization system allowing containers to run on
Kubernetes with similar primitives—which met our
needs for Docker operations like builds and test
containers.

Another challenge was efficiently managing Docker
image downloads.

SRE developed a clever solution involving a pre-
populated image containing essential Docker images,
significantly speeding up our build processes.

A critical technical constraint was the shift from using
local storage for Jenkins configurations to a more
resilient and scalable solution. SRE implemented Ceph
to address this, ensuring high availability and flexibility
in node rescheduling.

Once we resolved these technical blockers, we carefully
planned the migration from our existing Jenkins

https://kubevirt.io/
https://ceph.io/

instances to the new cluster without disrupting user
workflows. We collaborated closely with the
productivity team throughout this process, ensuring they
were onboarded and equipped with the necessary
knowledge to manage the new environment effectively.

Sharing our expertise and planning ensured a smooth
transition and phased out legacy practices and
deprecated systems from the old cluster. This approach
guaranteed that everything running on the new cluster
was current, operational, and well-understood by all
stakeholders.

Bart: How does the new setup with Jenkins on KubeVirt
differ from the previous generation?

Stephane: From a user's perspective, the core
development process remains the same: code commits,
build triggers, and pipeline management all function as
before. However, the switch to KubeVirt has enhanced
the underlying infrastructure for these processes. Each
build now operates within its dedicated virtual machine
(VM), like a separate computer within the whole system.
This isolation prevents resource-heavy builds from
impacting the performance or stability of other builds
simultaneously. As a result, the overall system becomes
more reliable, with each build having guaranteed access
to its allocated resources and consistent performance
throughout

We also focused on enhancing observability across all
resources. With KubeVirt and our properly managed
Kubernetes setup, we gained better insights into resource
usage beyond memory and CPU. This new setup
eliminated the need for our previous Sentinel system, as
Kubernetes now comprehensively handles resource
management within each Jenkins controller's dedicated
namespace. It also allowed us to allocate resources
dynamically based on each team's needs, ensuring
optimal performance without wastage.

We retained and improved our caching techniques for
tools like npm and Maven, significantly enhancing build
speeds. However, integrating KubeVirt did require us to
adapt the Jenkins Kubernetes plugin. Since KubeVirt
operates VMs rather than pods, we devised a
workaround where Jenkins starts a pod that, in turn,
launches a VM through a bash script. While this
approach introduces a slight delay compared to pods, our
optimizations have kept VM boot times under 30
seconds, which is manageable given our build durations.

Bart: Given these improvements, why not consider
using microVMs?

Stéphane: MicroVMs, such as those supported by
technologies like Kata Containers, are intriguing.
However, during our transition, some limitations with
kernel calls didn't align with our requirements. We're

https://plugins.jenkins.io/kubernetes
https://firecracker-microvm.github.io/
https://katacontainers.io/

watching this for future enhancements, especially
considering the potential for microVMs to offer faster
startup times, which remains a challenge with larger
VMs.

Bart: Has the new Jenkins cluster provided additional
opportunities for optimization?

Stéphane: Moving to a well-managed cluster has
unlocked several optimization avenues. One of the
immediate benefits is our access to Prometheus metrics,
which provide extensive insights into KubeVirt's
performance and overall cluster health. We've created
dashboards that monitor VM usage across the cluster,
including team-specific resource utilization in real-time
and historically.

At the end of each build, we include a link to a specific
dashboard that details resource consumption (network,
I0, memory, CPU) for that build. This level of
granularity allows teams to fine-tune their resource
allocations using predefined profiles—small, medium,
large, and extra-large. Teams can adjust resource
allocations based on their needs, optimizing for either a
few large builds or numerous smaller ones. This
flexibility enables teams to manage their resources
efficiently and aligns with our goal of providing robust,
scalable CI/CD capabilities out of the box.

Bart: Transitioning to Jenkins on KubeVirt was a

significant change. How did you ensure team buy-in and
maintain commitment throughout the process?

Stéphane: Encouraging teams to embrace the change
wasn't difficult from a business standpoint because we
had allocated a budget for such technical advancements.
Transparency was vital; we focused on making
developers' lives easier and communicated the benefits
and steps of the transition. We worked around teams'
schedules and concerns, ensuring minimal disruption.
There wasn't much resistance; management understood
the risks of maintaining an outdated cluster versus
modernizing our infrastructure for stability and uptime
guarantees.

Bart: Were there any obstacles or resistance you faced
during the migration?

Stéphane: Management supported the migration due to
the risks posed by our old cluster. The main challenge
was migrating builds from Docker out of Docker to
KubeVirt. We conducted thorough testing and phased
rollouts to minimize impact. Our productivity team
played a crucial role in ensuring success by monitoring
and addressing issues promptly.

Bart: Looking back, is there anything you would have
done differently?

Stéphane: We underestimated the importance of
meticulous resource management early on. Initially, we

assumed Kubernetes would handle everything
seamlessly, but we learned the importance of proactive
resource planning to prevent build failures from affecting
the entire cluster.

Additionally, managing our cluster was a distraction;
relying on SRE-managed infrastructure has proven more
efficient and reliable.

Bart: What's next for your team after completing this
migration?

Stéphane: My team will phase out our old cluster, focus
on architectural projects, and update internal libraries for
future Java versions. Meanwhile, SRE is exploring
advanced technologies like eBPF for automation and
observability enhancements, while the productivity team
focuses on optimizing Docker image caching.

This transition has prepared us well for future
innovations and efficiency gains across our CI/CD
pipeline.

Bart: How can people get in touch with you?

Stéphane: You can contact me through LinkedIn,
Twitter, or email. I actively respond on those platforms.

https://ebpf.io/

Chapter 8

From Docker
Compose to
Kubernetes

Migrating 24 services from Docker
compose to Kubernetes, Ronald
Ramazanov & Vasily Kolosov

Managing the intricate dance of 25 microservices across
diverse environments is no small feat, but it's a challenge
that Ronald Ramazanov, the DevOps lead at Loovatech,
and Vasily Kolosov, Loovatech's CTO and co-founder,
have mastered.

With a wealth of experience and a passion for cloud-
native technologies, they have successfully navigated the
transition from Docker Compose to Kubernetes,
ensuring seamless scalability and peak performance for
their client's applications.

In a conversation with Bart Farell, Ronald and Vasily
shared their secrets of success, the lessons they had
learned along the way, and whether every project should
start with Kubernetes.

You can watch (or listen) to this interview here.

Bart: Ronald, if you were starting with a brand-new
Kubernetes cluster, which three tools would you install
first?

Ronald: My first choice would be ArgoCD, a robust
GitOps tool known for its intuitive web interface.

https://kube.fm/docker-compose-migration-vasily-ronald
https://argo-cd.readthedocs.io/en/stable/

ArgoCD simplifies the deployment of other components
within the cluster, making it a valuable starting point.
Next, I would install Prometheus to monitor both the
cluster's activities and the performance of the
applications running on it. When combined with
visualization tools like Grafana and other management
tools like Alertmanager or kube-state-metrics,
Prometheus provides a complete and detailed
understanding of how the Kubernetes cluster performs
and its overall health.

Finally, I would add KEDA to the mix. It extends
Kubernetes' built-in scaling capabilities by allowing the
cluster to automatically scale based on custom metrics,
leading to more efficient resource utilization.

Bart: Vasily, do you agree with Ronald's choices, or
would you adjust this list of tools?

Vasily: These tools, like Swiss army knives, are
incredibly versatile and essential for our projects. They
prepare us for all sorts of concerns that can come up
when we deploy software, like scaling resources up or
down to meet demand, updating software without
interrupting service, and recovering quickly from any
failures.

Bart: Ronald, please tell us about your professional
background and current role.

Ronald: As the DevOps lead at Loovatech, I've spent the

https://prometheus.io/
https://github.com/grafana/grafana
https://keda.sh/
https://loovatech.com/

past four years working with a team of four engineers,
primarily focusing on cloud infrastructure. We mainly
utilize AWS and prefer Kubernetes as our go-to tool for
container orchestration. Our responsibilities are twofold:
we manage Loovatech's internally developed
applications and provide DevOps services to external
clients and their development teams.

Bart: Vasily, can you tell us about your role at
Loovatech?

Vasily: As Loovatech's CTO, I'm responsible for
ensuring the successful delivery of our diverse services
to our clients. These services encompass developing
custom software solutions tailored to their unique needs,
creating and maintaining cloud-based applications
accessible online (Software as a Service, or SaaS), and
designing, building, and managing the cloud
infrastructure that supports our clients' applications.

Ronald and I have been working closely together since
2018, when we first met during a search for a systems
administrator. Over the years, we've both grown
professionally alongside Loovatech as it has embraced
cloud-native technologies, and it's been an incredible
journey for us.

Bart: Thinking back about six years ago, could you
describe how your company shifted towards cloud-native
technologies, particularly Kubernetes?

Vasily: Initiallyy, our company focused on more
straightforward projects, but as we tackled more
complex challenges, we realized we needed to strengthen
our technical expertise. In 2018, we decided to embrace
containerization, even though it was yet to be the
industry standard.

The difficulty of maintaining high availability and
reliable service with our limited engineering resources
pushed us toward this decision. While automation tools
like Ansible and Terraform have been helpful, they can
no longer handle the increasing complexity of our
applications.

We saw that Kubernetes could offer solutions to these
challenges. We knew that investing in training our team
was essential to manage the increasingly complex
applications we were developing effectively.

Bart: Ronald, what specific resources or strategies did
you utilize to learn Kubernetes?

Ronald: My initial approach to learning Kubernetes
involved immersing myself in theoretical resources such
as articles, Medium posts, and conference videos.
However, I soon realized that true platform mastery
required hands-on experience and practical application.
The official Kubernetes documentation and the Stack
Overflow community proved indispensable resources,
guiding me through real-world implementation and

https://www.ansible.com/
https://www.terraform.io/
https://kubernetes.io/docs/home/
https://stackoverflow.com/questions/tagged/kubernetes
https://stackoverflow.com/questions/tagged/kubernetes

troubleshooting complexities.

Bart: Vasily, with technologies like Kubernetes
constantly changing, how have you seen the approach to
learning and staying up-to-date with these advancements
evolve?

Vasily: In the past, people traditionally learned new
technologies by reading books. However, with the rapid
evolution of technologies like Kubernetes, information
in books can become outdated within a year. Today, we
rely on platforms like Google and Stack Overflow to
access current information. This shift in learning
methods underscores the accelerating pace of
technological advancement and emphasizes the need to
adapt our approaches to stay current.

Bart: Vasily, what advice would you give your younger
self about learning Kubernetes?

Vasily: Reflecting on our journey, it's clear that our
company made the right technological choices, but we
could have benefited from embracing them sooner. We
could have spent more time debating traditional and
containerized approaches, slowing our progress. As
engineers, we must embrace experimentation with
emerging technologies, even if many of those
experiments don't immediately bear fruit. The
knowledge and experience gained from this trial-and-
error process are invaluable for staying ahead in our

rapidly changing field.

Furthermore, I now understand the importance of
actively engaging with the broader community early on.
By working in isolation initially, we missed out on the
wealth of knowledge and insights that come from
collaborating and sharing experiences with others.
Actively participating in the community would have
undoubtedly accelerated our team's learning and growth.

Bart: Your recent article delved into migrating from
Docker Compose to Kubernetes, exploring the reasons,
methods, and outcomes of such a transition. Given your
diverse clientele, could you provide specific examples of
challenges you've encountered while guiding different
companies through these technology shifts?

Vasily: Our clients range from emerging startups to
established enterprises, each with unique needs and
technical maturity. For instance, we recently partnered
with a food manufacturer who sought to optimize their
supplier interactions. Their system had modest
performance requirements and needed to be hosted on-
premises. When we introduced Kubernetes, they
prioritized simplicity over advanced features, opting for
a minimal setup without failover or high availability.
They felt potential downtime wouldn't significantly
impact their operations, making Kubernetes' overhead
unnecessary.

https://medium.com/@loovatech/application-migration-from-docker-compose-to-kubernetes-how-why-and-what-problems-b2d1c695c42b
https://docs.docker.com/compose/

This preference for simplicity is typical among clients
with limited scalability needs. Docker Compose remains
popular due to its user-friendly nature and rapid
deployment capabilities. However, we consistently
containerize all applications, ensuring a seamless future
transition to Kubernetes if needed.

On the other end of the spectrum, we also work on
projects that demand robust infrastructure solutions.
These complex initiatives require substantial investment
from our team. We've developed standardized Docker
Compose templates to facilitate deployment for more
straightforward applications that efficiently set up
standard services.

Bart: One of the clients that stood out in your article is
Picvario. Could you walk us through their journey, from
their initial stages to where they are now regarding their
app and infrastructure?

Vasily: Picvario began as a brand-new project, born from
the founder's vision for a digital asset management
system tailored to industries with vast media content
needs, such as sports teams, news media, and museums.
Their core challenge was facilitating the organization
and retrieval of media assets such as historical sports
photos or museum artifacts.

With limited funding, the focus was initially on the rapid
development of a minimum viable product (MVP) to

https://picvario.com/

secure their first enterprise client. During this phase, we
prioritized adding features over building complex
infrastructure. The system needed to handle essential
functions like content upload, processing, and simple
search. With an initial content size of around 50
gigabytes, the demands on the infrastructure were
manageable.

This experience taught wus a valuable lesson:
infrastructure complexity should align with the product's
development stage. Early on, simplicity was vital for
rapid development and conserving resources. As
Picvario evolved and added more features, including Al-
driven image analysis and complex search capabilities
across millions of assets, our infrastructure grew
organically to meet these new demands.

Starting with a simple Docker Compose file managing a
few services, Picvario's infrastructure rapidly expanded
to 25 services within a year. This growth prompted us to
reassess its scalability and performance under increased
load. The diverse workloads, which now included file
uploads, media processing, Al workflows, and extensive
search functionalities, presented significant challenges.

Ronald and I implemented strategic enhancements to the
infrastructure architecture to tackle these challenges and
better support Picvario's continued growth. These
changes focused on improving scalability and optimizing

resource allocation, ensuring the system remained robust
and efficient to meet the platform's ever-increasing
demands.

Bart: Ronald, you mentioned having 25 different
services running on a single host. Please provide us with
more details about the size and capabilities of that virtual
machine.

Ronald: We had a robust setup, but it had its flaws.
While the infrastructure was cost-effective and
manageable, it lacked fault tolerance. For instance, if the
virtual machine or network in a specific availability zone
encountered issues, our application would fail. This
single point of failure meant that problems in one
component could quickly escalate and affect others. This
became a critical issue when resource-intensive
problems like memory leaks or high CPU usage
impacted essential elements like the frontend or backend,
potentially leading to downtime.

Bart: Considering these challenges, what ultimately led
you to choose Kubernetes over other alternatives like
Ansible and Docker Swarm? When did you start the
migration process?

Ronald: Given our circumstances, it was clear that our
existing infrastructure needed a complete rebuild. We
carefully evaluated wvarious options, and Kubernetes
emerged as the top choice due to its widespread adoption

https://docs.docker.com/engine/swarm/

and robust capabilities in managing containerized
applications. However, our team had internal discussions
and differing opinions about whether Kubernetes might
be overly complex for our specific needs, especially
compared to more straightforward and potentially more
cost-effective alternatives like Ansible with Docker or
Docker Swarm.

After conducting thorough research and evaluation, we
realized that while these alternatives could address some
of our immediate challenges, they couldn't match
Kubernetes regarding long-term effectiveness and
scalability. Therefore, we decided to move forward with
Kubernetes. However, we took our time with the
migration process. We took the time to carefully plan
and prepare before initiating the transition to ensure a
smooth and successful implementation.

Vasily: The primary challenge during the migration
stemmed from the fundamental principle of statelessness
in Kubernetes. Applications within Kubernetes should
not store persistent data on individual nodes or within
containers. While conceptually straightforward,
implementing this principle posed a significant
challenge.

We encountered two specific issues. First, our
application's file upload process was complex. Large
files, often several gigabytes, cannot be uploaded in a

single request due to web service and browser timeout
limitations. We had previously used a chunked upload
approach to split files into smaller pieces, sending them
individually to the backend for reassembly. This
approach was practical when all files were stored on a
single machine, utilizing a temporary folder. However,
the transient nature of container storage in Kubernetes
made relying on specific folder locations problematic.

We transitioned to Amazon S3, a reliable and scalable
cloud storage solution to resolve this. We leveraged S3's
multipart upload feature, which allows uploading file
chunks and instructing S3 to reassemble them,
eliminating the need for custom code.

The second challenge revolved around processing
uploaded assets. This involved tasks such as transcoding,
applying Al algorithms, and extracting metadata — all
handled asynchronously by Celery workers. However,
many tools used in these tasks, like FFmpeg, require file
system paths. Ensuring temporary file availability on
every node in a distributed system posed difficulties.

Initially, we uploaded files to S3 and had workers pull
them to a temporary folder for processing, optimizing
this by avoiding duplicate downloads. Eventually, we
adopted a shared scratch file system, reducing delays and
ensuring consistent file access.

I recommend solutions like Amazon Elastic File System

https://aws.amazon.com/s3/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/mpuoverview.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/mpuoverview.html
https://docs.celeryq.dev/en/stable/index.html
https://www.ffmpeg.org/
https://aws.amazon.com/efs/

(EES) for scenarios involving large or numerous
temporary files. EFS automatically scales, integrates
seamlessly with existing infrastructure, and efficiently
handles large files, providing reliable access. This
approach simplifies the complexity and overhead of
managing temporary storage in a distributed
environment. These adjustments enabled us to maintain a
stateless architecture while managing our file-processing
requirements effectively.

Bart: Regarding the deployment and planning of your
infrastructure, how did you organize your Kubernetes
clusters? Were you working with a specific cloud
provider at that stage, or were you agnostic?

Ronald: Our infrastructure was already running on a
cloud provider, and we intended to keep it that way. Our
focus was on creating a Kubernetes cluster.

We faced two options: either deploy a Kubernetes cluster
on-premises, running it on virtual machines with tools
like KubeSpray or leverage a managed Kubernetes
service provided by a cloud provider, like AWS EKS or
Azure AKS.

A managed Kubernetes service offers a significant
advantage: the cloud provider configures and maintains
the control plane, the core of the Kubernetes system.
Using a managed Kubernetes service frees our engineers
to focus on deploying and managing applications within

https://aws.amazon.com/efs/
https://github.com/kubernetes-sigs/kubespray
https://aws.amazon.com/eks/
https://learn.microsoft.com/en-us/azure/aks/

the cluster and setting up essential Kubernetes
components like auto-scaling, ingress controllers, and
monitoring. Additionally, the cloud provider handles
control plane updates and troubleshooting, significantly
reducing our workload. Some research and preparation
are still necessary for Kubernetes version upgrades (for
instance, reviewing AWS documentation for EKS). The
cloud provider substantially reduces the overall effort
required.

We chose to use a cloud-managed service because it
requires less time from our engineers, is easier to
maintain, and is more cost-effective. For example, EKS
costs around $75 per month for the high availability of
the control plane.

Bart: With 25 services deployed in both test and
production environments, did you use any templating
engine for managing configurations?

Ronald: We used Helm charts to streamline our
configuration management. These charts significantly
reduced the number of configuration files we needed by
allowing us to create several universal, custom-built
charts that could be used across all environments and
application components. This approach simplified our
workflow and aligned with the "don't repeat yourself"
(DRY) principle, promoting efficiency and
maintainability.

https://docs.aws.amazon.com/eks/latest/userguide/kubernetes-versions.html
https://helm.sh/docs/topics/charts/

During the migration, we also took the opportunity to
update our CI/CD tools and practices. Before, we relied
on TeamCity to build and deploy Docker images. After
the migration, we continued using TeamCity for image
building. We switched to ArgoCD for deployments,
streamlining the process by having ArgoCD manage the
deployment of our Helm charts to the Kubernetes cluster.

Bart: Your article highlighted Argo CD as an essential
tool for a new Kubernetes cluster and discussed the
GitOps push and pull models. How did you use these
models in your migration process?

Ronald: There are two distinct deployment models. The
push model involves the CI/CD tool directly executing
deployment steps. It has access to the environment and
applies changes directly, for example, using commands
like helm install Or kubectl apply . This model was our
approach before the migration, where TeamCity
executed Docker Compose commands on virtual
machines via SSH.

In contrast, the pull model, central to GitOps, involves
an operator like Argo CD or Flux running within the
Kubernetes cluster. This operator continuously monitors
the state of your Git repository and automatically
synchronizes and updates your application whenever it
detects changes.

Each model has pros and cons, so we opted for a hybrid

https://www.jetbrains.com/teamcity/
https://argo-cd.readthedocs.io/en/stable/user-guide/helm/
https://argo-cd.readthedocs.io/en/stable/user-guide/helm/
https://www.gitops.tech/#push-based-vs-pull-based-deployments
https://www.gitops.tech/#push-based-deployments
https://www.gitops.tech/#pull-based-deployments

approach: we continue to use TeamCity for building
images, but it now triggers Argo CD to synchronize
applications by passing the image ID to it. This mixed
model combines the strengths of both models.

Bart: What were the results of all this work? What
feedback did you receive from the client, and what were
the key takeaways from your discussions?

Vasily: The outcome was very positive—our primary
challenge before the migration was handling high
volumes of content uploads. The previous system would
become overwhelmed when multiple clients uploaded
large amounts of data, leading to overloaded queues and
significant processing delays. This lag understandably
frustrated clients, especially those in time-sensitive fields
like sports photography, who needed their uploads
processed immediately:.

However, the migration to Kubernetes and cloud
services effectively addressed these issues. The cloud's
inherent scalability allowed us to dynamically adjust
resources based on demand, showcasing the ideal use
case for cloud technology to efficiently manage costs
and resource allocation. Kubernetes further streamlined
resource management by enabling us to define scaling
policies and triggers.

As a result, the quality of service improved dramatically.
We no longer received complaints about delays, and the

system efficiently handled even peak demands. This
success validated our investment and effort into the
migration, proving that the solution met and exceeded
our initial goals.

Bart: How did you approach communicating these
technical decisions to the client, especially given their
initial hesitation about Kubernetes?

Vasily: We Dbelieve in transparency and open
communication with our clients. However, we also
understand that explaining the benefits of complex
technologies like Kubernetes to non-technical
stakeholders requires a different approach.

Clients are primarily concerned with two things: cost and
value. To address these concerns, we focus on building
trust and clearly articulating the value proposition of our
proposed solutions. Building trust means demonstrating
our expertise and ability to make informed decisions that
lead to efficient project management and cost control.

Our value proposition needed to be more compelling
initially. We highlighted benefits like improved
availability and reliability, but these weren't immediate
concerns for the client then. They had a manageable
number of wusers, and their system could handle
downtime.

However, as their user base grew and the problems with
the existing system became more apparent, the value

proposition of Kubernetes became clearer. We showed
how migrating to Kubernetes would directly address the
issues impacting their business and user satisfaction.
This tangible value made the investment in Kubernetes
much more justifiable.

The key is to translate technical benefits into concrete
business value. If you can demonstrate how a solution
will solve specific business problems and improve the
client's bottom line, they are much more likely to see the
value and approve the investment.

Bart: What were your main goals in writing the article,
and how were the reactions?

Ronald: My primary goal was to give back to the
community by sharing my experience and insights.
During the migration, I heavily relied on community
resources, so I wanted to contribute my lessons learned.
Writing the article was also a personal challenge for me
to explore technical writing. It was my first attempt, and
I plan to continue writing.

Additionally, the article serves as documentation for new
team members, providing an overview of the project, our
infrastructure decisions, and the reasoning behind those
choices.

Bart: Vasily, do you have plans to continue writing blogs
or start your podcast to share your experiences?

Vasily: We plan to write more about our ongoing

projects. Since our last update, we've implemented
custom metric scaling and addressed complex multi-
tenant architecture issues. We also have exciting
developments at Picvario. Ronald is working on large-
scale infrastructure projects with a global reach, and we
aim to share these experiences with the community.

Ronald, please elaborate a bit on these upcoming
projects.

Ronald: To add to Vasily's earlier mention, we're
currently utilizing CloudFormation, but we're planning a
strategic shift to Terraform. Let me clarify the reasons
behind this decision.

Besides my involvement in Picvario, I'm also deeply
engaged in another project that involves AWS
infrastructures and Kubernetes. In the context of
Picvario, our responsibility lies in maintaining the
infrastructure for a single, large-scale application across
various environments. However, my other project
presents a different challenge: managing many small to
medium-sized applications with dynamic lifecycles.
These distinct applications operate in separate EKS
clusters based on specific customer requirements. This
challenge necessitates swiftly launching, updating,
migrating between accounts, or removing applications
and their associated infrastructures.

We currently manage 15 applications, and we anticipate

https://learnk8s.io/autoscaling-apps-kubernetes
https://aws.amazon.com/cloudformation/

this number will grow. Consequently, automation
becomes paramount in this scenario. While we currently
leverage CloudFormation—AWS's native infrastructure
as code tool—there are compelling advantages to
transitioning to Terraform and Terragrunt.

Despite CloudFormation's strengths, the combination of
Terraform and Terragrunt offers greater efficiency and a
more user-friendly experience. Terragrunt empowers us
to define our Terraform code once and then customize
parameters like variables for the application,
environment, region, or AWS account level. This
approach allows us to adhere to the DRY (Don't Repeat
Yourself) principle in our automation configuration, a
feature currently absent in CloudFormation.

Although we're still in the initial phases of this
transition, the benefits of this approach are already
becoming evident.

Bart: Besides writing articles and working on technical
projects, you're also a guitarist. Please share a bit about
your journey with the guitar, Ronald.

Ronald: I play electric guitar and have been playing for
about two or three years. I take weekly lessons, learning
new techniques and songs I enjoy. I mainly play metal
and some indie rock, recording these pieces for myself.

Bart: As a drummer, I can appreciate the intensity and
precision required in metal drumming. Vasily, can you

https://terragrunt.gruntwork.io/

tell us more about your involvement with music?

Vasily: I'm essentially a one-person band—I produce
music, write lyrics, sing, and handle all aspects of my
music creation. It's fascinating how technology has
revolutionized music production. Modern tools like
plugins and sound design techniques have opened up
many creative possibilities, much like how technologies
like Kubernetes have expanded our capabilities in the
tech world. Staying current with advancements in both
fields is essential for continuous improvement and
innovation.

Bart: Ronald, do you remember how your guitar playing
sounded when you first started?

Ronald: I recorded my early practice sessions and
uploaded them privately to YouTube. Looking back, it’s
clear how much I've improved since then, though I might
not want to share those early recordings publicly!

Bart: If people want to connect with you or learn more,
what’s the best way to reach you?

Ronald: The best way to connect is through LinkedIn.
You can find us there easily by searching for our names.

Chapter 9

Outpacing the
Optimization
Challenges In
Kubernetes

Tortoise: Outpacing the Optimization
Challenges in Kubernetes, Kensei
Nakada

Optimizing resource management for hundreds of
Kubernetes microservices is no small feat, but Kensei, a
seasoned Software Engineer, and Tortoise's creator, took
on the challenge headfirst. Drawing on deep technical
expertise and an inventive approach, he and his team
developed Tortoise to streamline autoscaling, offload
complexity from developers, and even explore cutting-
edge Wasm extensibility within Kubernetes.

Bart Farrell sat down with Kensei to unpack how he’s
transforming Kubernetes optimization—without
overwhelming service developers.

You can watch (or listen) to this interview here.

Bart: What are the top three up-and-coming Kubernetes
tools you're excited about?

Kensei: My top choice is the Gateway API, which
originates from SIG Network and stands out for its
unique framework-based structure. This versatile API
framework offers various controllers, such as Envoy
Gateway, Kong_Gateway, and [stio Gateway, each
implementing the interface, allowing users to choose the

https://kube.fm/tortoise-kensei
https://gateway-api.sigs.k8s.io/
https://github.com/kubernetes/community/tree/master/sig-network
https://www.envoyproxy.io/
https://www.envoyproxy.io/
https://konghq.com/kong
https://istio.io/

implementation that best suits their needs. For example,
users who prefer Envoy can opt for Envoy Gateway,
while others may select Kong or Istio Gateways based
on their specific requirements.

In second place, in-place pod resizing is a long-awaited
feature in Kubernetes. Traditionally, resource requests
and limits for Kubernetes pods have been immutable
once a pod is created, which limits flexibility. This new
feature introduces a significant improvement by enabling
modifications to these resource parameters after a pod
starts, which enhances Kubernetes’ auto-scaling
capabilities. The Vertical Pod Autoscaler (VPA) will
integrate with this feature, dynamically adjusting pod
requests based on real-time resource consumption—a
promising advancement that has been anticipated for
years.

The third project that excites me is SpinKube, a
serverless Kubernetes solution built on WebAssembly
(Wasm). While Wasm was initially developed for web
browsers, its potential within Kubernetes is now being
actively explored. SpinKube is particularly promising
because Wasm modules start and stop much faster than
traditional containers, allowing more efficient resource
usage. Given its rapid startup and shutdown times,
SpinKube could offer resource savings and operational
efficiency.

https://kubernetes.io/docs/tasks/configure-pod-container/resize-container-resources/
https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler
https://github.com/fermyon/spin
https://webassembly.org/

Bart: For those unfamiliar with you, could you tell us a
bit about yourself, your work, and where you're based?

Kensei: I'm Kensei Nakada, a software engineer based in
Japan.

Bart: How did you transition to Cloud Native
technologies? What was your background before that?

Kensei: My journey began with Google Summer of
Code in 2021, a mentoring program for open-source
projects. I was selected for the Kubernetes project, where
I developed a Kubernetes scheduler simulator. This
experience connected me with the Kubernetes open-
source community.

Following that, I contributed to the Kubernetes
scheduler, not just the simulator but the scheduler itself.
At the time, my professional work barely involved
Kubernetes, but these contributions sparked my interest
in Kubernetes and Cloud Native technologies. This
experience inspired me to explore other job
opportunities.

Before Cloud Native, I was a backend engineer primarily
working with Golang. Mercari offered me to join as a
backend engineer on their search team. However, my
interest in Kubernetes and Cloud Native grew, so I
requested a transfer to the platform team, which led to
my transition to Cloud Native.

Bart: With the fast pace of change in Kubernetes and the

https://www.linkedin.com/in/kensei-nakada
https://github.com/kubernetes-sigs/kube-scheduler-simulator/releases/tag/simulator/v0.1.0
https://go.dev/

broader Cloud Native ecosystem, how do you stay up-to-
date?

Kensei: My primary focus is staying updated with
upstream Kubernetes developments. I don’t actively
follow other Kubernetes tools until they gain significant
attention like SpinKube recently did. I stay abreast of
new features and updates mainly through my
contributions and peer reviews, which often involve
examining the core of Kubernetes itself.

Additionally, I follow LWKD (Last Week in Kubernetes
Development), a popular resource that is published
weekly and summarizes ongoing developments in
Kubernetes.

Bart: If you could go back in time, what would be the
most important career advice you'd give to your younger
self?

Kensei: I would advise my younger self to start learning
English earlier to avoid some of the language challenges
I face today. For instance, speaking at conferences can
be daunting, especially when 1 worry about not
understanding questions due to language limitations.
This language barrier is something I still encounter, even
recently, when working with Tetrate, an American
company. Learning English sooner would have eased
many of these situations.

Bart: As part of our monthly content review, we came

https://lwkd.info/
https://tetrate.io/

across your article titled Tortoise: Qutpacing__ the
Optimization Challenges in Kubernetes at Mercari. First,
can you explain your role at Mercari and what
responsibilities your team handled as platform
engineers?

Kensei: At Mercari, the platform team is divided into
four sub-teams: network, CI/CD, infrastructure, and
platform. I work within the platform infrastructure team,
which is responsible for the foundational elements of our
platform, such as managing Kubernetes clusters and
providing cloud infrastructure. The architecture we
manage is predominantly cloud-based and heavily relies
on Kubernetes. Additionally, we are accountable for
observability, =~ which, alongside managing our
infrastructure, forms our team’s core responsibilities.

Mercari has also embraced a company-wide initiative to
spin off applications onto independent platforms. Since
almost every Mercari application runs on our platform,
any infrastructure change we implement can
significantly impact all applications. Our team’s work on
the platform is crucial to this initiative, as we play a key
role in supporting Mercari’s scaling needs.

Bart: Kubernetes can be expensive to run at scale. How
do you approach overall cost optimization at Mercari,
and what strategies have been most effective for you?

Kensei: Our approach to Kubernetes cost optimization

https://engineering.mercari.com/en/blog/entry/20240206-3a12bb1288
https://engineering.mercari.com/en/blog/entry/20240206-3a12bb1288

involves node-level and pod-level strategies, with each
platform sub-team focusing on optimizing the
components under their purview.

The platform infrastructure team, for example, is tasked
with optimizing computing resources and observability
tools. My primary focus has been computing resource
optimization, specifically at the node level, where we
select the most efficient instance types and configure the
Cluster Autoscaler. For instance, we prioritize using spot
instances, which are significantly more cost-effective
than standard on-demand nodes. We also implemented
T2D instance types on GCP, which has led to substantial
cost savings. Because managing infrastructure is our
core responsibility, implementing these infrastructure-
level changes is more streamlined for us.

On the other hand, pod-level optimizations involve
adjusting resource requests, limits, and auto-scaling
configurations specific to each service. Service
developers, not the platform team, are typically
responsible for monitoring and fine-tuning resource
consumption for their respective services. This division
of responsibilities allows us to address cost optimization
at infrastructure and service levels effectively.

Bart: Optimizing applications indeed requires an in-
depth understanding of the applications themselves.
Kensei: Ideally, developers are responsible for

https://github.com/kubernetes/autoscaler
https://cloud.google.com/compute/docs/general-purpose-machines

optimizing their services, but effective optimization
requires deep Kubernetes expertise, which not all service
developers possess. This is why we have a dedicated
platform team to manage Kubernetes, building tools, and
an abstraction layer so developers can work with
Kubernetes without needing extensive knowledge of its
complexities.

As Kubernetes specialists, we do need to be involved in
pod-level optimization. However, given the scale of
Mercari’s infrastructure—with over 1,000 microservices
and numerous departments—it’s unrealistic for the
platform team to work individually with each team on
optimization. Instead of directly involving each team’s
efforts, we focused on reducing the engineering burden
associated with optimization and encouraged each team
to handle their optimization tasks.

To support this, we began by documenting best practices
for optimization, although we found that more than
documentation was needed, as developers still had to
follow all necessary steps manually. To further
streamline the process, we developed the Slack Resource
Recommender, a Slack bot that recommends optimal
resource requests based on the service’s resource
consumption history.

Bart: Could you elaborate on how the resource
recommender Slackbot works? Is it based on the

VerticalPod Autoscaler?

Kensei: Slackbot is built around the VerticalPod
AutoScaler (VPA), a subproject from SIG Scheduling.
VPA monitors each service's resource usage and
calculates the optimal resource requirements based on
past consumption. It then adjusts each pod's resource
requests accordingly. While VPA is an effective tool, we
found it can disrupt services. Instead of using it directly,
we created a Slackbot that recommends resource
adjustments based on its logic.

Here's how VPA works: when it needs to change the
resources for a pod, it evicts and deletes the pod so that
the ReplicaSet can create a new one. During this process,
the VPA's mutating_webhook changes the resource
request for the new pod. While this method effectively
applies VPA's recommendations, it also results in service
interruptions because of the pod replacements. Another
issue is that frequent pod restarts can occur if the
recommendations change often. These drawbacks led us
to refrain from using VPA directly.

So, we built the resource recommender bot based on
VPA. Instead of acting automatically, it collects a
month's worth of VPA recommendations and sends them
monthly as suggestions via Slack. This way, people can
consider the recommendations without worrying about
sudden changes or disruptions. A bot that provides such

https://github.com/kubernetes/community/tree/master/sig-scheduling
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers#mutatingadmissionwebhook

advice on resource requests and limits would appeal to
many.

Bart: Are there any potential downsides or challenges
people should consider regarding the Slackbot?

Kensei: We encountered several challenges with the
resource recommender. The first major issue was the
accuracy of the recommendations. The suggested
resource values can quickly become outdated since they
are based on the VPA’s one-month history. Mercari’s
applications evolve constantly, with implementation
changes or shifts in traffic patterns, which can affect the
relevance of these recommendations. The
recommendations are accurate when generated, but if
someone applies a week-old recommendation, there’s a
risk of running out of memory.

The second issue was engagement. Users may ignore the
recommendation messages we send, as deciding whether
to apply the suggestion is up to them. Due to the
potential for outdated information, the recommendations
aren’t foolproof; they act more like hints, leaving users
unsure about their reliability. Each team must verify if a
recommendation still aligns with current resource usage
and ensures safe application, which requires engineering
time. Over time, interest in the recommender messages
has declined, and some users ignore them.

The final challenge was a fundamental one: optimization

is a continuous process. It’s not just the recommender;
optimal resource values must be re-evaluated with every
application change. Developers are, therefore, in a cycle
of constant tuning, as optimization never truly ends.
Given Mercari’s large number of microservices, this
ongoing effort accumulates significant engineering time,
making it a burden to sustain manual resource
optimizations.

Bart: Despite the challenges, do you find that using the
bot ultimately results in worthwhile cost savings?

Kensei: Having the bot is undoubtedly better than not
having it at all, but, in practice, it didn’t have as much
impact as we’d hoped. Mercari’s extensive use of
Horizontal Pod Autoscaler is a big reason. HPA is used
to manage scaling based on CPU utilization, and we
typically set a target of 80%. When the service’s CPU
usage exceeds this threshold, HPA automatically
increases the number of pods.

The platform team has documented best practices for
Kubernetes, and we recommend using HPA for CPU
scaling. Most large services rely on HPA, with hundreds
of HPAs active in the cluster. However, when HPA
manages the CPU, the recommender bot has a limited
impact on CPU optimization.

For example, if an HPA is set to target 80% CPU
utilization and the service consistently uses only 8 out of

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

10 cores, the recommender might suggest reducing the
CPU request to 8 cores. However, this doesn’t optimize
resource utilization because HPA will target 80% of the
new, reduced eight cores. In other words, changing the
CPU request alone doesn’t alter how HPA manages CPU
usage. This is why the recommender cannot effectively
optimize the CPU when HPA is in control. While HPA
automates CPU scaling, it doesn’t ensure optimal CPU
utilization. Although Mercari relies heavily on HPA, its
CPU parameters—and sometimes the resource requests
—must be fine-tuned to achieve the best performance.

Bart: Given the recommender bot's limited impact on
CPU optimization when HPA is involved, how did you
tackle these challenges?

Kensei: Initially, we considered adding HPA
recommendations to the resource recommender bot, but
we realized it would face the same issue as before—
users tend to ignore these messages. This led us to
explore a different approach to streamline the
optimization process. The core challenge is the sheer
number of parameters that require tuning for each
service: HPA parameters, resource requests, and resource
limits. With so many microservices and configurations,
it’s impractical to expect service owners to optimize
every service manually, as each adjustment demands
expertise and significant effort.

We then considered automating these optimizations as
much as possible to reduce the manual workload. While
VPA offers automated tuning, we encountered issues and
limitations, leading us to refrain from using it directly.
We considered creating a wrapper or alternative to VPA
to address these challenges. For HPA optimization, we
identified multiple scenarios that can lead to
inefficiencies and devised ways to handle these
situations. We began envisioning an automated solution
to detect and address these inefficiencies in HPA
settings.

These ideas culminated in the creation of Tortoise, an
open-source project designed to replace both HPA and
VPA by handling optimizations automatically. Tortoise is
structured to require minimal user input; it only exposes
a few necessary parameters, such as the target
deployment name, so users aren’t burdened with
additional tuning. Once implemented, Tortoise
eliminates manual optimization adjustments, creating a
self-managing system. This was the vision we set out to
achieve with Tortoise—an environment where
optimization happens seamlessly, without ongoing
intervention.

Bart: You mentioned that Tortoise functions as a
wrapper. Can you explain this in more detail? How does
it operate in terms of CRDs and data storage?

Kensei: Tortoise introduces a Custom Resource
Definition (CRD) called "Tortoise," which manages HPA
and VPA behind the scenes. When a user creates a
Tortoise instance, HPA and VPA are automatically set up
for the specified targets. However, Tortoise is more than
just a setup shortcut; it manages and optimizes these
autoscalers to ensure efficient resource utilization that
HPA and VPA alone can’t achieve.

For example, while HPA often requires manual tuning
for optimal CPU utilization, Tortoise is designed to
handle this optimization automatically once created. This
is the crucial distinction between Tortoise and the
underlying autoscalers—it abstracts away the
complexities of HPA and VPA management. With
Tortoise, users can focus solely on the parameters
Tortoise exposes without worrying about the underlying
optimization, as Tortoise handles it all.

Bart: Regarding standard tools for collecting and
recommending metrics, we often think of Prometheus,
Metrics Server, and HPA for monitoring and
observability. Does Tortoise aim to replace all of these?

Kensei: Tortoise replaces both HPA and VPA but doesn’t
replace tools like Prometheus or Metrics Server. VPA’s
recommendations are based on P90 or P95 resource
consumption, reflecting typical 90th or 95th percentile
usage. Tortoise relies on this historical consumption data

https://prometheus.io/
https://github.com/kubernetes-sigs/metrics-serverhttps://github.com/kubernetes-sigs/metrics-server

to make its recommendations but doesn’t store any of it
directly. Instead, it refers to VPA as a data source for past
consumption.

While Tortoise takes over HPA and VPA functionality, it
occasionally relies on VPA to generate specific
recommendations. VPA needs a Metrics Server for real-
time consumption data and Prometheus to store its
recommendation history. So, Metrics Server and
Prometheus are indirect dependencies for Tortoise, but it
doesn’t aim to replace them—only to use the data they
provide.

Tortoise allows users to provide input via its Custom
Resource Definition (CRD), "Tortoise." This CRD lets
users define specific parameters like the target service
name or department and configure the scaling method
for each resource. For example, you can set Tortoise to
scale a container’s CPU horizontally and its memory
vertically, with a separate scaling strategy per container
and resource.

Tortoise continuously pulls recommendations from VPA
for vertical scaling, then calculates and applies a stable
recommendation to the pods. While it operates similarly
to VPA, Tortoise reduces the frequency of
recommendation changes to minimize disruptions, which
was one reason we opted not to rely on VPA alone.
Another significant difference is that Tortoise performs a

rolling upgrade instead of evicting pods. This upgrade
process is similar to using the Kubernetes CL.I command
kubectl rollout restart , which restarts a deployment while
adhering to a rolling update strategy. For instance, if a
deployment has three replicas, VPA might delete one or
two pods based on the Pod Disruption Budget (PDB) to
replace them, leaving fewer replicas to handle the traffic
temporarily. To avoid this, Tortoise adds a new replica
with updated resources before removing the old one,
ensuring traffic stability throughout the update.

Tortoise also supports certain Golang environment
variables. Since Mercari relies heavily on Golang,
specific environment variables must be updated
alongside resource requests, a feature VPA doesn’t
support. Tortoise addresses these variables in its vertical
scaling. It continuously optimizes HPA parameters for
horizontal scaling, allowing HPA to scale pods as
needed. Though calculating HPA’s target utilization is
complex, documentation is available in the Tortoise
repository for anyone interested.

In addition to HPA parameters, Tortoise optimizes cases
where resource requests affect HPA’s efficiency.
Achieving optimal CPU usage requires aligning CPU
requests and HPA parameters, a task often difficult to
manage manually. Tortoise handles these complexities
automatically, reducing the need for manual intervention.

https://kubernetes.io/docs/tasks/run-application/configure-pdb/
https://github.com/tortoise
https://github.com/tortoise

Tortoise manages horizontal and vertical scaling, and in
Mercari’s fast-paced environment, frequent migrations
are common. From its design phase, Tortoise was built to
simplify migration. Since many services already have
HPA configured, a new HPA from Tortoise could create
conflicts. To avoid a complicated process of deleting and
recreating HPAs, Tortoise includes an option to attach
existing HPAs. This approach significantly streamlined
migration, allowing developers to migrate their HPAs to
Tortoise by merging a pre-configured pull request.

Despite these efforts, we faced challenges with adoption.
While the migration process was smooth, many
developers hesitated to adopt Tortoise because it was a
new tool. Teams often wanted to see other services
successfully using Tortoise before migrating, creating a
“wait-and-see” effect.

To address this hesitation, we held open sessions to
introduce Tortoise, explain why it was necessary, and
share how it addressed challenges with resource
recommendation and optimization. These sessions
helped secure early adopters, and as more teams began
using Tortoise, we showcased their successes to
encourage wider adoption. Ultimately, these migration
efforts aim to achieve a complete transition from HPA to
Tortoise across Mercari’s infrastructure.

Bart: Are there any other reasons you think made

Tortoise so successful at Mercari?

Kensei: A key advantage of Tortoise is the shift in
responsibility it enables. By exposing only a few
parameters to users and managing underlying
autoscaling automatically, Tortoise transfers the
responsibility for pod optimization from individual
service developers to the platform team. This means
optimizing autoscaling and resources for each pod is
now the platform’s responsibility. If Tortoise doesn’t
fully optimize a microservice, it’s on us, not the service
developers. In that case, we work to improve Tortoise to
meet their requirements better. This shift relieves service
developers from managing per-service resource
optimization and places it within the platform team’s
scope.

Technically, many of Mercari’s microservices are gRPC
or HTTP services, primarily written in Golang. Most are
based on a standardized internal template for
microservice implementation. This consistency allows us
to create a unified solution that optimizes all
microservices.

Bart: Looking back, is there anything you would
approach differently in the design or implementation of
Tortoise?

Kensei: L.ooking back, I would have focused on creating
a more streamlined internal design to make Tortoise

https://grpc.io/

easier to maintain and contribute to. While we made the
interface user-friendly by exposing only essential
parameters, like the microservice name, the underlying
processes for generating recommendations and adjusting
pod resources are intricate. I recognized that maintaining
this complexity might be challenging for the team, so I
worked to pass on as much knowledge as possible before
leaving Mercari. Simplifying these internal components
would have paved the way for smoother collaboration
and long-term development.

Bart: Was there something specific about tortoises that
inspired you?

Kensei: I have two pet tortoises at home, Azuki and
Okada. They’re Japanese names. During Mercari’s
internal hackathon, I created Tortoise as an experimental
project and got to choose the name. There wasn’t any
deeper meaning behind it—I like turtles!

Bart: You’re also the author of the KubeScheduler
Wasm extension. How did it start?

Kensei: Currently, the scheduler has two main
extensibility options: a Webhook-based approach and the
Go-Plugin SDK. While both provide flexibility, they also
come with certain limitations. To offer a more user-
friendly way for developers to extend their schedulers
based on custom use cases, we began exploring
WebAssembly (Wasm) as a new option. This is the first

https://github.com/kubernetes-sigs/kube-scheduler-wasm-extension
https://github.com/kubernetes-sigs/kube-scheduler-wasm-extension

time the Kubernetes community is attempting Wasm-
based extensibility in the official ecosystem. Envoy has
implemented a similar Wasm runtime concept, but this
approach is new for Kubernetes.

Our scheduling team has gained valuable insights on
Wasm, and we’re considering sharing these findings with
other teams with similar interests.

Bart: What are your upcoming goals and priorities?

Kensei: I’ve just started a new role at Tetrate, so my
main focus is getting onboarded. We’re also working on
some significant internal improvements to the scheduler
on the open-source side. If you notice any issues with the
new scheduler binaries, there’s a chance I might be
responsible for those!

Bart: For people who want to reach out, what’s the best
way to connect?

Kensei: You can find me on X (formerly Twitter) and
LinkedIn—feel free to reach out.

https://www.linkedin.com/in/sanposhiho/

Chapter 10

GitOps at Scale

How We are Managing a Container
Platform With Kubernetes at Adidas,
Angel Barrera

Managing a container platform for thousands of
developers is no small task, but it's an exciting challenge
for Angel Barrera, Senior Platform Engineer at Adidas.
From pioneering tools like Virtual Cluster and
Crossplane to transforming the company's infrastructure
with GitOps, Angel is at the forefront of Adidas's cloud-
native evolution. He has streamlined cluster
management, enhanced deployment processes, and
boosted transparency and accountability—all while
navigating the complexities of a global retail giant.

Bart Farrell catches up with Angel to unpack the
strategies, tools, and insights powering Adidas's cloud-
native journey.

You can watch (or listen) to this interview here.

Bart: Could you tell us about three Kubernetes tools that
have grabbed your attention lately?

Angel: Virtual Cluster is a game-changer. Multi-tenancy
in Kubernetes has always fascinated me. Typically, we
use namespaces to separate various parts of a cluster, but
with Virtual Cluster, you can create isolated control

https://kube.fm/platform-gitops-angel
https://www.vcluster.com/

planes on top of a shared console plane. This separation
makes it ideal for scenarios like A/B testing different
Kubernetes versions or letting teams try out newer
releases without impacting the central cluster. It's also
perfect for users with older dependencies since they can
spin up a virtual cluster just for their needs.

Next is Crossplane, a tool making significant strides in
the infrastructure space. Crossplane bridges platform
users and owners by allowing users to request
infrastructure—like databases or network components—
fully declaratively.

Meanwhile, platform owners can build reusable and
flexible customizable modules. I first tested Crossplane a
couple of years ago when it was still rough around the
edges, especially with etcd and CRDs, but it's come a
long way since then, thanks in part to some friends
working at Upbound, the company behind it.

The third tool I'm excited about is Service Mesh,
especially those using eBPF for packet interaction. This
technology allows precision in wuse cases like
observability and tracing by working directly at the
kernel level, bypassing container or application-level
integration.

Bart: Please tell us more about your background, role,
and where you're based.

Angel: I'm Angel Barrera, based in Madrid, Spain, and

https://crossplane.io/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources
https://ebpf.io/

work at Adidas as a Senior Platform Engineer. Adidas is
a global retail giant, and my role is to support and enable
our development teams. With about a thousand
developers worldwide, managing our container platform
is a huge responsibility, and my work centers on making
that process as seamless as possible for our teams.

Bart: And how did you come to be a Platform Engineer?
What were you doing before?

Angel: I came on board at Adidas as a Platform Engineer
and eventually stepped into a senior role. Before that, I
was at a startup where I wore many hats, handling a bit
of everything. At Adidas, I now focus on managing and
improving our platform while supporting teams across
the organization.

Bart: What first drew you into the Cloud Native world?

Angel: 1 can't recall the exact year, but it was around
2016 or earlier. At that time, I worked as a Java architect
for one of Spain's largest banks, heading backend
architecture. We were transitioning from SOAP to
RESTful APIs and JSON, shifting the whole architecture
to be compatible with containers. That's when I stumbled
upon Kubernetes, OpenShift, and the cloud. AWS was
my first introduction to cloud services, and I was part of
the team that decided on the bank's platform, evaluating
options like OpenShift for Kubernetes or DC/OS from
Mesosphere. The cloud's capabilities and the power of

https://www.adidas.com/
https://dcos.io/
https://mesosphere.com/

container orchestration opened my eyes.

As a developer, I was already familiar with Docker since
it was part of our daily toolkit. However, this was the
first time I saw the bigger picture—continuous
deployment, cloud-native patterns, and Kubernetes—all
while working in a massive banking environment.

Bart: Would you say that experience boosted your
cloud-native career?

Angel: Around that time, I also teamed up with my
friend Paul Rossell6, now at Giant Swarm, to build a
SaaS project. Those days were full of passion—we
developed something groundbreaking. It was essentially
a '"mamespace-as-a-service" model, where we set up hard
multi-tenancy on Kubernetes at a time when no such
solution existed. We connected with folks from Google,
AWS, IBM, and Docker. Other companies became
interested in our solution, but sharing namespaces within
a Kubernetes cluster didn't hold up for multi-tenancy.
The real win came from creating multi-tenancy by
managing separate clusters. It felt like we were taking on
giants back then, and it was an unforgettable journey.

Bart: The Kubernetes ecosystem moves fast. How do
you stay current with all the changes? Do specific
resources like blogs and YouTube channels work best for
you?

Angel: Keeping pace with the CNCF ecosystem,

https://www.giantswarm.io/

especially Kubernetes, is challenging. I follow key
industry accounts on X (formerly Twitter). I also monitor
updates from the Learnk8s community and CTOs like
Darren Shepherd from Rancher and Henning_Jacobs
from Zalando.

Sysdig is another go-to; they regularly publish concise
blogs on new Kubernetes versions, highlighting the
essential changes without diving too deep into release
notes. Kubernetes release notes are full of information,
but they can be overwhelming. Sysdig distills this into
what matters. Besides that, I occasionally check
LinkedIn for professional updates, though it's more job-
oriented. Startups like Uber and Lyft also have fantastic
tech blogs that are worth reading.

Bart: If you could give your younger self one career
advice, what would it be?

Angel: Push as hard as possible. In your 20s and early
30s, you have the energy to pursue big goals. Later, with
more job and family responsibilities, you don't have the
same freedom or time. Your brain also feels different in
your 20s than in your 30s! It's rewarding to see your
work's impact, like improved performance in your
company's products, but keeping up with the pace of
change is a real challenge as time goes on.

Bart: In your article "How We Are Managing_a
Container Platform," you mention a specific date, May

https://learnk8s.io/news-events-jobs
https://x.com/ibuildthecloud
https://rancher.com/
https://x.com/try_except_
https://jobs.zalando.com/tech
https://sysdig.com/
https://medium.com/adidoescode/adidas-how-we-are-managing-a-container-platform-1-3-6ce24e756490
https://medium.com/adidoescode/adidas-how-we-are-managing-a-container-platform-1-3-6ce24e756490

10th, 2022. What happened on this date?

Angel: On May 10th, 2022, we made our first commit in
the GitOps repository. This date marked the moment we
fully committed to the GitOps approach. Before that, we
tested various configurations, explored different project
structures, and figured out what would work best for us.
Our first commit to the repository established the
foundational project structure, and we built it up further.

Bart: Could you give us an overview of the existing
infrastructure setup and practices before you moved to
GitOps?

Angel: In 2018, Adidas had two people in charge of
building the container platform. They envisioned
managing everything as code across multiple
repositories, even though there wasn't yet any Flux,
DevOps, or multi-cluster configuration support. They
had to get creative, developing a structure to manage
multiple clusters in a large corporate setup with all its
constraints.

Starting with five to ten on-prem clusters, they organized
configurations with one Git repository per cluster, plus a
centralized repository for shared configurations.

They created branches for different purposes. For
example, ingress configurations were in separate
branches and environments like development and
production. Jenkins ran pipelines that merged

https://www.gitops.tech/
https://fluxcd.io/
https://www.jenkins.io/

configurations and applied them to the clusters. It
worked well and given the tools available in 2018, it was
a solid solution—awe-inspiring work from those two
team members, as it kept things running until 2022.

Bart: And what was the deployment strategy before the
migration? Was it all GitOps?

Angel: It was a push model where Jenkins merged and
applied the configuration directly to the clusters, not
GitOps. However, since the team had that "everything as
code" approach from the beginning, transitioning to a
GitOps structure was straightforward. While the
configuration was all in code, the deployment process
has significantly transformed with GitOps.

Bart: Did this setup expand naturally over time, or was
there a structured plan guiding it from the beginning?

Angel: There wasn't a structured approach from the start.
The team initially set up five to ten on-prem clusters at
Adidas. However, with the addition of AWS, our cluster
landscape expanded from a single location in Germany
to a global presence. Instead of a few large clusters, we
have around a hundred smaller ones distributed across
America, Europe, China, and other regions.

While the original configuration approach worked well
for a handful of clusters, managing close to a hundred
clusters became too much. When I joined in 2021, it was
clear we needed a more scalable solution, so I connected

with R&D to explore alternatives.

Bart: What was the next step? Did you start
brainstorming how the deployment process would work?

Angel: I first collaborated with a colleague to define the
requirements and constraints for this new DevOps
approach. Being a global company, we needed to
manage Adidas's regional specifics. We needed
flexibility in our GitOps setup to accommodate different
configurations for regions like China, which operates on
a unique calendar with various restrictions, such as
freeze periods.

Together, we outlined the essential features we needed in
GitOps to match our legacy management process, drew
up a plan, and established KPIs to measure our progress.
A primary goal was to avoid the inefficiency of opening
dozens of PRs to update multiple clusters—each
requiring reviews. In the old setup, we had one
repository per cluster, so any global change meant
opening up to 50 PRs, which was time-consuming and
prone to human error.

Another critical issue was that Jenkins struggled to run
50 pipelines simultaneously, leading to bottlenecks. If
you were outside a maintenance window due to a full
queue, your configuration could delay the update,
causing inconsistencies across clusters. We set KPIs to
reduce the number of PRs, minimize configuration

errors, and improve the scalability of our setup, aiming
for a more resilient and efficient process.

Bart: It's one thing to set a plan and metrics, but what
was it like putting everything into action? Did any tools
or practices need to change along the way?

Angel: The first significant shift was moving away from
Jenkins for deployments. We still use Jenkins to validate
configurations, checking that everything looks as it
should and producing a difference between the intended
configuration and what currently resides in the cluster.
Now, Jenkins is strictly for CI tasks, focusing on
validation rather than deployment. Moving away from
Jenkins was a considerable effort, and the migration
process was challenging, but now it's running smoothly,
and we're delighted with the results.

We also began setting up new clusters using Flux and
gradually transitioned older clusters to a GitOps model.
It was a careful process; we wanted zero downtime or
issues, and it went well. Since everything was already
managed with Helm charts, knowing the chart states and
values helped us switch from a push to a pull model with
Flux. There were risks, especially with production
workloads, but the transition went smoothly.

Bart: What advantages have you seen with the pull-
based mechanism you transitioned to?

Angel: The benefits are incredible. Now, we have

https://helm.sh/docs/topics/charts
https://en.wikipedia.org/wiki/Pull-based_development

complete visibility into every change before it’s applied.
Previously, our method of merging configurations from
multiple repositories was somewhat improvised, which
made it hard to track what would change. You'd open a
pull request (PR) with a set of changes, but due to issues
in the pipeline, it was challenging to be sure those
changes would be applied as intended.

With this new setup, each pull request displays an exact
"diff,"” or list of changes, thanks to continuous
integration (CI) checks that compare the PR against the
current cluster configuration. This transparency has been
essential in demonstrating the value of the migration to
our managers.

Another significant gain has been increased confidence
in the deployment process. We're no longer relying on
Jenkins to apply configurations to clusters. Instead, each
cluster pulls its configuration directly from Git, making
the process much faster and more reliable. Any sync
issue immediately triggers an alert, something we didn't
have before. We even have a dashboard that
straightforwardly displays the platform's status—green
means everything's running fine, and red means there's
an issue. The shift to GitOps has proven to be more than
worth the effort.

Bart: How has the new setup influenced transparency
and accountability in your deployment process?

Angel: Managers and stakeholders now have complete
visibility on changes, which has boosted their confidence
in our team. Previously, we had some friction whenever
we needed to deploy urgent updates, like critical system
upgrades. Without complete confidence in the Jenkins
setup, conveying that assurance to stakeholders was
hard, and it sometimes held up deployments.

With this new setup, we can give them precise details
about what's changing, when, and how it will impact
specific regions or components. With that insight,
understanding and approving changes is much easier for
them.

We also built a changelog around this process. Like any
large company, Adidas requires detailed auditing records
connected to our project management tools—in our case,
Jira. Every change now has a timestamp, a person
associated with it, and links back to the PR and diffs.
This traceability was missing before. Everything is fully
auditable, significantly benefiting security and business
compliance.

Bart: Can you walk us through how you provision the
clusters and integrate them into the GitOps workflow?

Angel: It's pretty straightforward. We start by creating a
managed cluster, whether on GKE or EKS—any
provider works similarly. Once the cluster is ready, we
inject secrets to access our private Git repository, so we

use tokens to secure access to BitBucket. After the
secrets are in place, we install Flux with standard
commands hke flux install .

We then set up two key objects: the Git repository and
the Kustomization. The cluster then syncs with GitOps,
and that's it. There's still some room for improvement,
though. For instance, connecting a cluster to the Adidas
network requires a few manual steps, but we're working
on automating that to make it part of the standardized
setup. We'll close that gap in the next few weeks or
months.

Bart: How about your multi-tenancy model—has it
evolved since migrating to this setup?

Angel: It mostly stayed the same. We have two different
multi-tenancy approaches based on the team's needs. For
instance, we have "power users" who control a dedicated
cluster. These are wusually expert teams, like the
monitoring or API teams, who may need cluster-level
access to test a new controller before rolling it out
globally. They can request a whole cluster for their work.
Then, we have the more common scenario: developers of
various applications at Adidas. These teams only have
access to specific namespaces rather than the entire
cluster. We handle their permissions with role bindings,
so they're limited to their assigned namespaces and don't
see the underlying cluster configurations.

https://fluxcd.io/docs/components/kustomize
https://kubernetes.io/docs/reference/access-authn-authz/rbac#rolebinding-and-clusterrolebinding

The setup doesn't interfere with developers' work—they
focus on deploying their applications, leaving cluster
management to us. We encourage them to adopt GitOps
practices, but they ultimately choose whether to follow
our guidelines or deploy directly from their laptops if
they prefer.

Bart: How has the developer feedback been since they
started using the platform for production deployments?

Angel: Feedback from our internal developers and
platform teams—our primary users—has been positive.
Our end-users might not see the details of our cluster
management efforts, but our platform users certainly do,
and they're eager to adopt our approach. Their
enthusiasm alone strongly signals that we're on the right
path.

In platform engineering, we have various specialized
teams—monitoring, API, and security, for instance—and
they've all recognized the benefits of our cluster
management setup. They see that it's more flexible,
scalable, and reliable, which are critical needs in a large
organization like ours.

Previously, teams managed their deployments
independently, choosing their deployment strategies.
Now, seeing the strengths of our standardized approach,
they want to be onboarded into our system. For example,
if the monitoring team wants to roll out a new version of

https://en.wikipedia.org/wiki/Platform_engineering

Prometheus across clusters, they can now follow a
unified, streamlined deployment process.

These teams are joining our DevOps repository using the
same container orchestration methods we use. They
create pull requests, review changes, and follow the
same standardized processes, which has brought a lot of
alignment across platforms. This consistency makes
workflows easier and strengthens alignment between
technical and business stakeholders.

Bart: How did the business side respond to the
migration? Was it hard to get their buy-in, and what was
that experience like?

Angel: It was immediately clear to everyone that we had
a problem—periodic issues due to misconfigurations led
to operational challenges. We needed a change and knew
we had to approach it strategically.

With our previous setup, making a single change meant
updating around 50 repositories and reviewing each pull
request. With our "four eyes principle," two people
review each PR. If each person spends 15 minutes on
each PR, that's 30 minutes per PR. When multiplying
that by 50, we needed roughly 24 to 34 hours of
collective effort for one change. It made a compelling
case when we showed management that we could cut
that down from over 30 hours to just about 30 minutes.

Beyond cost and time, reliability was another selling

https://prometheus.io/
https://en.wikipedia.org/wiki/Separation_of_duties#Four-eyes_principle

point. Building a more robust process meant everyone
could see what would be applied, when, and exactly
what changes would occur. Everything became
auditable, bringing a level of flexibility and control that
wasn't impossible—previously, deploying a change felt
like crossing your fingers and hoping for the best. Now,
we know what's happening every step of the way.

The business quickly saw the benefits, not only from a
cost and efficiency perspective but also in terms of
visibility and reliability. Once they understood the
improvements, they bought into the migration very
quickly.

Bart: Now that you've completed the migration to a
GitOps-based cluster management system, is there
anything you'd approach differently if you were to start
this journey again?

Angel: If 1 could do it over, I'd prioritize automation at
the infrastructure level. We initially tried using
Crossplane to automate network attachments for clusters,
but it was still maturing and introduced issues in the
control plane, so we paused full integration. Looking
back, I'd push for other solutions to handle network
connections and related infrastructure to replace the
manual steps we're still using. Bringing everything into
our GitOps model has been a complex task, especially
when working across departments to prepare for
Crossplane fully. In hindsight, I would have strongly

advocated for these automation efforts to streamline our
setup.

Bart: We want to wrap up by getting to know you a little
better. You've been working remotely for a while now.
Do you see yourself returning to an office setup?

Angel: The first rule is never say never, but honestly, I
don't see myself returning to an office full-time. A daily
commute isn't essential for tech roles if you can do it
remotely. That's not to say there aren't benefits to in-
person work, but it has to work for both the company
and the employee. If being in the office boosts
performance but takes away from work-life balance, it's
a tough compromise.

The experience is also different depending on the type of
company. Large organizations with established in-office
routines may handle remote work differently than a
remote-first startup. Hybrid models add complexity,
especially when there's pressure to show up in person.

Remote work offers a balance everyone deserves, but
you must also deliver equal or greater value remotely. If
not, the company has a reason to bring you back to the
office. When applying for a job, it’s essential to
understand the company’s remote work culture—
whether remote is the standard or if there are occasional
in-office meetups.

Ultimately, office work should benefit both the company

and the individual. But in 2024, going in just for the sake
of presence doesn’t add up.

Bart: What's next on your path—both professionally and
personally?

Angel: Right now, I focus on my role as an individual
contributor at Adidas. But before joining, I was in
engineering management and tech lead positions, where
I got to mentor and support people, and I miss that part
of the job. I'm deeply passionate about tech, so I'm not
moving away from it, but my next step would ideally be
a managerial role—whether next year or a bit further
down the line. I enjoy designing features and watching a
team bring a project to life.

I have a 10-month-old son, and watching him grow has
been incredible. Life looks different now; I can't imagine
it any other way.

Bart: Will he be learning Kubernetes basics soon?

Angel: I've already got some Kubernetes books lined up
for him!

Bart: If anyone wants to reach out, where can they find
you?
Angel: X is probably the best way to reach me.

Acknowledgments

We are deeply grateful to the brilliant minds who took
the time to share their stories and insights, making this
book a reality.

Pierre Mavro: Pierre’s lessons on automating clusters at
scale and the importance of effective observability and
tool choices have been invaluable. He continues to push
the boundaries of what’s possible in Kubernetes
management. Connect with Pierre on LinkedIn.

Dan Garfield: Dan’s expertise in GitOps and the
transformative power of Ingress continues to inspire
engineers worldwide. His vivid storytelling and
thoughtful reflections have enriched the Kubernetes
community. He can be reached on Twitter or through
Codefresh.

William Morgan: William’s journey from AI to
simplifying service mesh complexities 1is both
enlightening and transformative. His work on
demystifying eBPF and advancing secure, observable
Kubernetes practices is crucial. Follow him on Twitter
and explore his work at Linkerd.

Matthew Duggan: Matthew’s advocacy for a Long-Term

https://www.linkedin.com/in/pierre-mavro
https://twitter.com/todaywasawesome
https://codefresh.io/
https://twitter.com/wmorgan
https://linkerd.io/

Support model in Kubernetes provides deep insights into
the challenges and opportunities for greater stability in
the ecosystem. Stay connected with him on LinkedIn.

Artem Lajko: Artem’s practical insights into multi-
tenancy and efficient platform engineering have enriched
the knowledge base of countless Kubernetes
practitioners. His experience serves as a guide for those

managing complex infrastructure. Reach him on
LinkedIn.

Hillai Ben-Sasson & Ronen Shustin: Hillai and Ronen’s
research into Kubernetes security, including their
insights into hacking Alibaba’s cloud environment, are
eye-opening and crucial for cloud safety. Follow Hillai
on LinkedIn and Ronen on LinkedIn.

Stéphane Goetz: Stéphane’s achievement of scaling
Jenkins to 10,000 builds a week stands as a remarkable
milestone in CI/CD. His strategies in cloud-native
development are practical and forward-thinking. Connect
with him on LinkedIn.

Ronald Ramazanov & Vasily Kolosov: Ronald and
Vasily’s journey from Docker Compose to Kubernetes is
a must-read for anyone navigating cloud-native
transformations. Their stories are full of actionable
guidance for teams managing complex migrations.
Ronald is available on LinkedIn, and Vasily on LinkedIn.

https://www.linkedin.com/in/matthew-duggan
https://www.linkedin.com/in/artem-lajko
https://www.linkedin.com/in/hillaibensasson
https://www.linkedin.com/in/ronenshustin
https://www.linkedin.com/in/stephane-goetz
https://www.linkedin.com/in/ronald-ramazanov
https://www.linkedin.com/in/vasily-kolosov

Kensei Nakada: Kensei’s pioneering work with Tortoise
and his innovative approach to Kubernetes resource
optimization, including exploring Wasm integration,
highlight a forward-thinking vision. Connect with him
on GitHub.

Angel Barrera: Angel’s leadership in transforming
Adidas’s infrastructure with a GitOps-driven approach
stands as a powerful example of platform engineering at
scale. His work continues to inspire the broader cloud-
native community. Find him on LinkedIn.

https://github.com/kensei-nakada
https://www.linkedin.com/in/angel-barrera

Thanks to the Guests

A heartfelt thank you to every guest who opened up
about their experiences. Your willingness to share your

victories, struggles, and insights has made this journey
unforgettable.

This book would not be the same without your stories
and expertise.

Your contributions shape the future.

A Special Thanks

A special thanks to Daniele Polencic at LearnK8s—the
silent mastermind behind so much of what we do. Your
leadership, vision, and quiet impact shaped this more
than words can say.

205

